
Elsevier Editorial System(tm) for Pervasive and Mobile Computing

Manuscript Draft

Manuscript Number: PMC-D-07-00017R1

Title: BlueTorrent: Cooperative Content Sharing for Bluetooth Users

Article Type: Special Issue PerCom2007

Corresponding Author: Sewook Jung,

Corresponding Author's Institution: UCLA

First Author: Sewook Jung

Order of Authors: Sewook Jung; Uichin Lee; Alexander Chang; Dae-Ki Cho; Mario Gerla

BlueTorrent: Cooperative Content Sharing for
Bluetooth Users

Sewook Jung a, Uichin Lee a, Alexander Chang a, Dae-Ki Cho a, and
Mario Gerla a

a Department of Computer Science, University of California, Los Angeles, Los Angeles,
CA, USA

Abstract

People wish to enjoy their everyday lives in various ways, among which entertainment plays
a major role. In order to improve lifestyle with more ready access to entertainment content,
we propose BlueTorrent, a P2P file sharing application based on ubiquitous Bluetooth-
enabled devices such as PDAs, cellphones and smart phones. Using BlueTorrent, people
can share audio/video contents as they move about shopping malls, airports, subway sta-
tions etc. BlueTorrent poses new challenges caused by limited bandwidth, short commu-
nications range, mobile users and variable population density. A key ingredient is efficient
peer discovery. This paper approaches the problem by analyzing the Bluetooth periodic in-
quiry mode and by finding the optimum inquiry/connection time settings. At the application
layer, the BlueTorrent index/block dissemination protocol is then designed and analyzed.
The entire system is integrated and implemented both in simulation and in an experimental
testbed. Simulation and measurement results are used to evaluate and validate the perfor-
mance of BlueTorrent in content sharing scenarios.

Key words: BlueTorrent, Bluetooth, P2P

1 Introduction

Bluetooth is an always-on, low-power, and short-range hookup for implementing
Wireless Personal Area Networks (WPANs). It became the most popular PAN com-
munication device. The Economists [11] reported that sales of Bluetooth devices
are more than doubled in 2005 to reach 320M units, and the figure is expected to
exceed 520M this year.

The concept behind Bluetooth is to support universal short-range wireless capabil-
ities using the 2.4GHz globally unlicensed low power band. Bluetooth allows users
to connect up to eight devices by forming a star-shaped cluster, called piconet.

Preprint submitted to Elsevier Science 13 June 2007

* Manuscript

The cluster head is called master and the other nodes are called slaves. Two Blue-
tooth devices within 10 m range can exchange data up to 723kbps. To minimize in-
terference among different Piconets, Bluetooth uses frequency hopping (FH) with
pseudo-random ordering of 79 frequencies in the same band.

Bluetooth is intended to various applications, including audio and data. As widely
observed these days, Bluetooth gradually replaces cables to link computers to key-
boards, printers, and mouse. It is often treated as a multimedia enabler such that
users can listen to and download music from other machines using wireless head-
sets and MP3 players. More importantly, new legislation banning the use of mobile
phones without a hands-free kit while driving boosted the use of Bluetooth-based
mobile headsets in public. This adoption has in turn cleared the way for the inclu-
sion of Bluetooth in all kinds of new products. For example, automotive manufac-
turers are looking to link Bluetooth devices with the on-board system to provide
in-car stereo/hands-free solution.

With Bluetooth’s continuing proliferation, Bluetooth-based applications are well
positioned to deliver new opportunities to all facets of the industry. This paper
deals with one fast growing application – namely, proximity advertising and mar-
keting. In 2005, handset maker Nokia and music label EMI started a project to let
coffee shop customers listen to music via Bluetooth [3]. Similarly, San Francisco’s
WideRay has placed Bluetooth-enabled kiosks in selected music stores, video game
stores, and theaters across the country to send messages asking if users are in-
terested in getting more information about various items the store is selling, e.g.,
music, ring tones, video etc. More interestingly, in August 2006 CBS announced
that it will make clips from its prime-time fall program line-up available for free
via CBS Outdoor billboards [7]. The digital billboards, initially located in NYC’s
Grand Central Station, will allow cellphone or PDA users to watch clips such as
CSI. There are already off-the-shelf commercial products available for proximity
marketing such as BlueBlitz and BlueCasting.

However, proximity marketing solutions so far are based on a client and server
model. A service provider spreads advertisements using a Bluetooth Access Point
(BT-AP) to mobile hosts within Bluetooth communication range (i.e., 10m). How-
ever, since users are mobile and the Bluetooth channel is error-prone, the total
amount of data that a mobile user can download from the server is limited to a
few hundreds kilobytes – i.e., only images or small video clips. Moreover, it is
not practical nor economically feasible to install BT-APs every 10m. Under such
circumstances, distributing contents larger than several hundred KB requires cus-
tomers to stop in front of the BT-AP, unless we adopt a P2P technology.

In this paper, we propose BlueTorrent, a cooperative content sharing protocol for
Bluetooth that exploits sparsely distributed BT-APs allowing mobile users to co-
operatively download relatively large files (e.g., 1-10Mbytes). The challenge now
becomes to support P2P connections among mobile Bluetooth users. In Bluetooth,

2

one node must be a master and the other node must be a slave: the role must be
dynamically changed with a frequency that minimizes the discovery latency, yet al-
lowing enough time for useful peer to peer data transfers. To this end, we analyze an
existing standard function and find the optimal parameter configurations. To effec-
tively share content in spite of short link duration, BlueTorrent uses BitTorrent-like
file swarming. Content is divided into a number of small pieces, and mobile users
can exchange whatever pieces are available. BlueTorrent uses a cooperative carry
and forward strategy: pieces are forwarded whenever a connection is available in
order to minimize download latency. Note that meta-data (e.g., unique file ID, title,
media type) of a file is also spread opportunistically via mobility. BlueTorrent users
can actively query other peers to search for a file of interests. The following is the
key results of our study:

• We find that our simple periodical inquiry scheme at the application layer results
in better performance than the standard inquiry mode. The latter only supports
parameter control at the time scale of seconds, thus resulting in performance
degradation.

• We identify key parameters and their configurations to minimize the peer discov-
ery latency. Among them, we show that the inquiry scan period plays a key role
in determining the optimal configuration of the other parameters.

• We validate the performance of BlueTorrent via simulations and testbed exper-
iments. For some tested scenario, our cooperative data sharing results in more
than 400% improvement in terms of download latency. We show that the size of
a piece is important in mobile content sharing. For AP mode, we find that for a
given user density, there exists the optimal speed, leading the best performance.

This paper is organized as follows. In Section 2, we explain Bluetooth. In Section
3, we analyze the periodic inquiry mode in Bluetooth for P2P connections and find
optimal configurations. In Section 4, we propose and analyze our index and content
sharing protocol. In Section 5, we evaluate our protocols through extensive simu-
lations. In Section 6, we show the preliminary performance results of BlueTorrent
in our testbed. In Section 7, we analyze power consumption and discuss incentive
plans to increase cooperation. In Section 8, we review the related work and then
conclude the paper in Section 9.

2 Bluetooth Overview

The total bandwidth in Bluetooth is divided into 79 channels (each 1 MHz). Fre-
quency hopping (FH) occurs by jumping from one physical channel to another in
a pseudorandom sequence. The same hopping sequence referred as an FH chan-
nel must be shared by two devices that communicate each other (i.e., by forming
a piconet). The hop rate is 1600 hops per second, so that each physical channel is
occupied for 625µs. This interval is referred to as a slot and is numbered sequen-

3

tially. An FH channel is shared between a master and slaves using a time division
scheme in which data are transmitted in one direction at a time, with transmissions
alternating between two directions. Because more than two devices share the pi-
conet medium (an FH channel), the access technique is Time Division Multiple
Access (TDMA). Transmission of a packet starts at the beginning of a slot and
can span multiple slots (1, 3, or 5 slots accordingly).The FH sequence is deter-
mined pseudorandomly based on piconet master Bluetooth ID. Therefore, several
piconets can coexist with minimal interference. Occasionally, two piconets will use
the same physical channel during the same time slot, causing a collision and data
loss, but this happens rarely, and it is recovered by forward error correction (FEC)
and error detection/ARQ techniques. Bluetooth standard defines an asynchronous
connectionless (ACL) link for a point-to-multipoint link between the master and all
the slaves in the piconet. Achievable data rates on the ACL link vary depending on
the number of slots per packet and on the FEC strategy. FEC packets formats are
DM1, DM3, and DM5 (with the digits indicating the number of slots used). The
non-error coded formats are DH1, DH3, and DH5. Readers can find the details of
Bluetooth in the published specification [5] or in the textbook [27]

3 Bluetooth for P2P

A peer in BlueTorrent must be able to discover other peers in order to share con-
tent. For two nodes to connect using Bluetooth, one node should be in the Inquiry
state and the other in the Inquiry Scan state. However, since BlueTorrent users are
randomly moving, their roles as Inquirers (masters) or Inquirees (slaves) cannot be
predetermined, rather, they must be randomly alternated. Bluetooth supports such
a random role selection through the periodic inquiry mode. As shown later, the
performance of the periodic inquiry mode is dependent on various inquiry param-
eters. Careful analysis is required to minimize the connection setup latency. In this
section, we begin with the overview of the Bluetooth inquiry procedure. We then
analyze the mode and empirically find the optimal parameter setting via extensive
simulations.

3.1 Bluetooth inquiry procedure

A master peer in the Inquiry state sends inquiry packets and waits for response
packets from the potential slave peers. The number of physical channels used for
the inquiry procedure is reduced from 79 to 32 for increased discovery efficiency.
Moreover, the master peer uses the inquiry hopping sequence for inquiry (as Tx
slots), and the potential slave peers uses the inquiry response hopping sequence
(different from the former) for response (as Tx slots). Therefore, the master peer
must switch to inquiry response hopping sequence to listen to response packets (as

4

Inquiry Scan

256 A-trains 256 B-trains

Inquiry Window (Tw_inq)

Inquiry Response Packet

Inquiry Packet

Random Back-off IntervalInquiry Scan

Window (Tw_inq_scan)

Interval (Tinq_scan)

Inquiry Packet

A

B

Fig. 1. Inquiry procedure example

Tw_inq

Tinq_period

Tinq_scan

Tw_inq_scan
Tinq_min

Tinq_max

Fig. 2. Periodic inquiry mode

Rx slots). Conversely, the potential slave peers must switch to the inquiry hopping
sequence to listen to inquiry packets (as Rx slots). The inquiry hopping sequence
is divided into two distinct sequences called A- and B-train. Each train contains
16 physical channels and the total duration is 10ms (=16*0.625ms). The Bluetooth
specification mandates that each train must be repeated at least 256 times (i.e.,
2.56s) before switching to another train. The hopping rate for inquiry is increased
to 3200 hops/second (i.e., half-slots) so that the master peer can transmit very short
(68µs) inquiry packets every 312.5µs. In each Tx slot, the master can send two
inquiry packets, and in next Rx slot, it listens to response packets from other de-
vices. This alternation repeats during the period of the inquiry window Tw inquiry.
Note that the host controller interface allows us to set the interval as a multiple of
1.28s through HCI Inquiry host controller interface (HCI) command [5]. Figure
1 shows an example of the inquiry procedure. The size of the inquiry scan window
is 5.12s (=4*1.28s).

Other peers that want to make connections to the master peer should be in the In-
quiry Scan state. Each peer enters to the Inquiry scan interval for every inquiry scan
interval (Tinq scan) and stays there for inquiry scan window (Tw inq scan). Tw inq scan

should be greater than the length of a train (i.e., >10ms) in order to ensure that
a frequency synchronization between inquiring and scanning peers can happen
when the scanning frequency is in the currently active train of the inquirer, and
it cannot be larger than Tw inq. The ranges of Tinq scan and Tw inq scan are given
as [10.625 − 2560ms] and [11.25 − 2560ms] respectively. These parameters can
be set usingHCI Write Inquiry Scan Activity HCI command. After receiving

5

the inquiry packet, the peer changes its state to the Inquiry Response state and sends
back an inquiry response packet containing its Bluetooth device address and clock
information. It is important to note that the peer backs off for a random number of
slots to reduce the probability of colliding with other inquiry responses. This ran-
dom number is drawn uniformly out of a range [0, 1023] (<640ms) if the inquiry
scan interval is larger than or equal to 1.28s; otherwise, a range [0, 127] (<80ms)
is used. The master peer can receive responses if they arrive within the inquiry
window. There is no acknowledgment of a response packet.

3.2 Periodic inquiry mode analysis

The conventional neighbor discovery is asymmetric in the sense that for a given
node, the role is fixed to be either as a mater or a slave. In mobile peer-to-peer
networks, however, peers should be able to randomly switch their roles in or-
der to find each other, since a node can be either a client or a server. Bluetooth
defines a symmetric neighbor discovery mode in the specification (as of v1.0),
called Periodic Inquiry Mode where inquiry procedures are periodically exe-
cuted. This mode is set by configuring the range of period, [Tinq min, Tinq max], and
inquiry length (Tw inq) (see Figure 2). In each round, a node alternates an inquiry
state immediately followed by an inquiry scan state. The length of an inquiry is
fixed to Tw inq, and the length of an inquiry scan state is uniform randomly chosen
over [Tinq min − Tw inq, Tinq max − Tw inq] in order to avoid synchronization. Note
that this interval has nothing to do with the inquiry scan window (Tw inq scan) and
interval (Tinq scan).

Although the periodic inquiry mode is widely used, its optimization is not ex-
plored. For instance, BlueZ, an official Bluetooth protocol stack for Linux, in-
cludes Host Controller Interface Daemon (HCID). 1 HCID provides a wrapper
function by internally setting the parameters, i.e., Tw inq = 8 and [Tinq min = 16,
Tinq max = 24]. 2 Since the unit is 1.28s, each round takes on average 35.84s.
Therefore, the parameter selection is not proper for mobile P2P applications. Thus,
the goal of this section is to optimize the P2P mode by tuning three key parameters,
namely inquiry window size (Tw inq), the length of inquiry scan state (via [Tinq min,
Tinq max]), and inquiry scan interval (Tinq scan).

The inquiry window size may vary based on which Bluetooth version we use. As
of Bluetooth v1.2, the interlaced scan mode is used by default. Since the interlaced
mode scans two trains in a row, for a given inquiry the probability of missing an in-
quiry packet (i.e., inquiry failure) is negligible [21]. Bluetooth v1.1, however, does
not support it, requiring the inquiry window size Tw inq at least 5 (5*1.28s=6.4s)
in order to discover neighbors with high probability [21]. Bluetooth v1.1 devices

1 http://www.bluez.org
2 HCID exports functions via D-Bus, a system for interprocess communication (IPC)

6

gradually disappear and currently, v1.2 and v2.0 devices become dominant [15].
Thus, we focus only on Bluetooth v1.2 and v2.0.

The inquiry procedure is blocking. The function returns the list of inquiry responses
received during the inquiry period (i.e., 1.28s*Tw inq). The obvious disadvantage is
that we have to wait for the entire period. For mobile applications, non-blocking
inquiry is preferable because the received inquiry responses can be read immedi-
ately via event polling; consequently, we can reduce the average discovery latency.
The events of interests are EVTINQUIRYRESULT and EVTINQUIRYCOMPLETE.
The inquiry procedure can be cancelled anytime by sending an HCI inquiry can-
cel command. The non-blocking inquiry procedure allows us to have an arbitrary
length of inquiry window size, instead of a multiple of 1.28s.

The length of inquiry scan state is determined by setting [Tinq min, Tinq max]. The
minimum value must be carefully chosen such that it should be larger than inquiry
scan interval (Tinq scan) since the first scan starts after Tinq scan instead of starting
immediately. In addition, the difference between those two values should be greater
than zero. Otherwise, the process becomes deterministic – two nodes may never be
able to discover each other. It is important to note that although the standard peri-
odic inquiry mode uses the unit of 1.28s for the minimum and maximum values, we
can set arbitrary numbers at the granularity of 0.625ms by implementing a periodic
inquiry mode in the application layer.

The inquiry scan interval (Tinq scan) is also important because it determines the
usefulness of the inquiry scan state. The usefulness depends on how many “scans”
actually happens during the inquiry scan period and can be measured by dividing
the average length of inquiry scan period by Tinq scan. The more the number of
scans, the higher is the usefulness. As shown later, for a given Tinq scan, there exists
an optimal configuration of [Tinq min, Tinq max]. However, this comes at the cost of
more energy consumption. This implication is discussed at the end of the section.

Along with the aforementioned parameters, the maximum back-off interval for the
inquiry response has a critical impact, especially for Bluetooth v1.2 and v2.0. Even
though a “single” inquiry is enough to receive an inquiry packet, an inquiry fails
if the node backs off before returning an inquiry packet, and in the mean time
the inquiring node switches its role; i.e., the failure probability depends on the
maximum back-off interval. Bluetooth specification (v1.2 and v2.0) requires that
the back-off interval be drawn uniformly from the range [0,1023] if the inquiry
scan interval is larger or equal to 1.28s, or from the range [0,127] otherwise. But the
actual implementation is dependent on chipmakers. For instance, in the extended
version of this paper we show that Bluetooth v1.2 (Silicon Wave) uses [0,1023],
and Bluetooth v2.0 (Broadcom) does not implement random back-off.

For the sake of illustration, we provide a simple mathematical analysis to better
understand the correlation among these parameters. The probability that one node

7

is in the inquiry scan mode is given as: Pscan=1 − Tw inq

Tw inq+Tdiff/2
where Tdiff =

Tinq max − Tinq min. Let us assume that Tinq min = Tw inq (since Tinq min ≥ Tw inq).
Given that the node is in the inquiry scan mode, the probability of successful in-
quiry, denoted as Psi, is determined based on the starting point of the inquiry pe-
riod. When it is in [0, Tinq scan − Tw inq], the inquiry window does not overlap
with the inquiry scan window; thus, the probability of successful discovery is 0.
When [Tinq scan −Tw inq, Tinq scan −Tw inq +Tmax bo], the inquiry window overlaps
with the inquiry scan window, but the probability of successful discovery is purely
determined by the random back-off: i.e., 1/Tmax bo. When [Tinq scan − Tw inq +
Tmax bo, Tinq scan], the overlapped period is longer than Tmax bo; consequently, the
probability is 1. Let us simply assume that the distribution of the starting point of
the inquiry period is uniform. 3 The probability of successful inquiry is given as:
Psi = Tw inq−Tmax bo+1

Tinq scan+Tdiff /2
. Since discovery happens only when one is in the inquiry

scan mode and the other is in the inquiry scan mode, the probability of successful
discovery is proportional to these two events: Ps = αPsiPscan where α is a con-
stant normalization factor. Let us assume that each discovery trial 4 is independent
of one another. The process follows geometric distribution with success probability
Ps. The average number of trials is simply 1/Ps. Since the average length of a trial
is Tw inq +Tdiff/2, the latency is given as Tw inq+Tdiff /2

Ps
. One can reduce the average

length of a trial by decreasing the inquiry window size, but this will decrease Ps as
well. As a result, the average number of trials will increase (i.e., 1/Ps). Similarly,
one can maximize Ps with infinitely large inquiry window, but this makes the aver-
age length of a trial infinite. These examples show that we cannot make the inquiry
window arbitrary small or long. Note that it is non-trivial to accurately model the
overall process since each trial is dependant on the previous trial, which can be
represented using a Markov chain. This analysis is part of our future work.

3.3 Periodic inquiry mode evaluation

We developed InqSim to empirically find an optimal parameter configuration. This
simulator performs a slot-level discrete time, event-driven simulation and accu-
rately models the P2P mode. Every time an event expires, it schedules the next
event such as inquiry, scan, and random back-off. During the simulation, actual
discovery is checked when a scan expires. A node then examines whether the other
party is in the inquiry state and whether the state lasts longer than its random back-
off value. If so, the other party will be notified and the inquiry stops immediately
(i.e., non-blocking inquiry). To simulate a random encounter of two nodes, the ac-
tual measurement starts after passing 160,000 slots (i.e., 100s). Since the overall
simulation is simple and requires slot level control and various parameter tuning,

3 This distribution is closely related to the periods of both inquiry and inquiry scan. If one
is longer than the other, it is more likely that we observe the longer one.
4 Inquiry and inquiry scan comprise a trial.

8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50

D
e
n
s
i
t
y

Latency

Gamma (1.1857, 4.6743)
Data

(a) Tmax bo=1023

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

D
e
n
s
i
t
y

Latency

Gamma (1.0694, 3.1898)
Data

(b) Tmax bo=127

Fig. 3. Discovery latency distribution (Tw inq = 1.28s, Tdiff = 3.5s, Tmin = 1.28s)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12

A
v
e
r
a
g
e

D
e
l
a
y

Tdiff

Tmin=1.28
Tmin=1.58
Tmin=1.88
Tmin=2.18

(a) Tmax bo=1023

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12

A
v
e
r
a
g
e

D
e
l
a
y

Tdiff

Tmin=1.28
Tmin=1.58
Tmin=1.88
Tmin=2.18

(b) Tmax bo=127

Fig. 4. Discovery latency with various Tmin

we use InqSim instead of using UCBT, a simulator used in Section 5.

We measure the discovery latency of the periodic inquiry mode that is the elapsed
time until either node successfully discovers the other party. Since we implement
non-blocking inquiry, we use inquiry period (Tw inq) in range of 0.38s to 2.48s with
a gap of 0.3s. For a given range [Tinq min, Tinq max], we define Tmin = Tinq min −
Tw inq and Tdiff = Tinq max − Tinq min; i.e., the inquiry scan period is in range of
[Tmin, Tmin +Tdiff]. We assume that each inquiry scan period contains at least one
scan; thus, Tmin ≥ Tinq scan. For given maximum back-off (Tmax bo) and inquiry
scan intervals, we measure the discovery latency by varying Tw inq, Tmin and Tdiff .
For each configuration, the average of 3000 runs is presented.

Figure 3 shows the latency distribution with inquiry period of 1.28s, Tdiff = 3.5s,
Tmin = 1.28s, and Tmax bo = 1023/127. It shows that the curves can be accurately
fitted using gamma distribution with parameters (1.1857, 4.6743) for Tmax bo =
1023 and (1.0694, 3.1898) for Tmax bo = 127. In general, the latency distribution
can be fitted using gamma distribution.

9

 5

 10

 15

 20

 0 2 4 6 8 10 12

A
v
e
r
a
g
e

D
e
l
a
y

Tdiff

Tw-inq=0.68
Tw-inq=0.98
Tw-inq=1.28
Tw-inq=1.58
Tw-inq=1.88
Tw-inq=2.18
Tw-inq=2.48

(a) Tmax bo=1023

 5

 10

 15

 20

 0 2 4 6 8 10 12

A
v
e
r
a
g
e

D
e
l
a
y

Tdiff

Tw-inq=0.68
Tw-inq=0.98
Tw-inq=1.28
Tw-inq=1.58
Tw-inq=1.88
Tw-inq=2.18
Tw-inq=2.18

(b) Tmax bo=127

Fig. 5. Discovery latency with various lengths of inquiry period

Figure 4 shows the results of the average latency with the inquiry scan interval
of 1.28s, which is the default scan interval, and with the inquiry period of 1.28s.
To show the impact of the maximum back-off size, we use Tmax bo = 1023 slots
(639.375ms) and 127 slots (79.375ms). The figure shows that too small Tdiff results
in high average delay: given that both nodes are in the same state, they need to spend
more time to unlock the synchronization. As Tdiff increases, the delay decreases
till it reaches a certain threshold. As the inquiry scan period gets longer, randomly
encountered nodes are likely in the inquiry scan state. Mathematically speaking,
given a collection of random intervals, the length bias or inspection paradox tells
us that longer intervals are more likely to be sampled than shorter intervals [22].
Both nodes tend to stay longer in the scan state, thus resulting larger latency. The
figure also shows that the back-off value has a great impact on the average latency.
When the maximum back-off interval is decreased to 127 slots, the average latency
drops more than 30%. Interestingly, Figure 4(b) shows that the average latency has
its minimum at Tdiff ≈ 0.3s and then it increases again till it reaches Tdiff ≈ 1.5s.
If Tdiff < 1.28s, it does not improve the usefulness of the inquiry scan period; only
a single scan per round is feasible. Tdiff is mainly used to avoid synchronization.
Figure 4(b) clearly shows that Tdiff ≈ 0.3s is the optimal value, and unnecessar-
ily large Tdiff adversely affects the performance. In the case of Tmax bo = 1023
slots (639.375ms), it requires large Tdiff to handle random back-off. Let us say
that Tdiff = 0.1s. For a given scan period of [0, 1.38s], scan only happens during
[1.28, 1.38s]. Although an inquiry packet can be successfully received during this
period, backing off larger than the residual life time of the inquiry period results
in failure. The results show that we conclude that the optimal value can be found
when “Tinq scan = Tmin” and this trend is consistent with different inquiry periods.

Figure 5 shows the results of various inquiry periods ranging from 0.38s to 2.48s
with a gap of 0.3s. Both Tmax bo = 1023 and Tmax bo = 127 are used for simula-
tions. The length of inquiry scan is 1.28s. The graph shows that the latency is heav-
ily dependent on the length of inquiry period and Tmax bo, but it is less sensitive to
the Tdiff . This trend is even more evident as the length of inquiry period increases.

10

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12

A
v
e
r
a
g
e

D
e
l
a
y

Tdiff

Tinq-scan=1.28
Tinq-scan=0.64
Tinq-scan=0.32
Tinq-scan=0.16

(a) Tmax bo=1023

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12

A
v
e
r
a
g
e

D
e
l
a
y

Tdiff

Tinq-scan=1.28
Tinq-scan=0.64
Tinq-scan=0.32
Tinq-scan=0.16

(b) Tmax bo=127

Fig. 6. Discovery latency with various Tinq scan

The graph also shows that enlarging inquiry period after a certain threshold gives us
a mere improvement: i.e., 1.58s and 1.28s for Tmax bo = 1024 and Tmax bo = 128
respectively. Given this, the length of Tdiff is less sensitive: Tdiff = [4, 6]s for
Tmax bo = 1023 (avg. latency 4.3s) and Tdiff = [3.5, 5.5]s for Tmax bo = 127 (avg.
latency 3.3s).

Figure 6 shows the results as a function of inquiry scan interval with Tw inq = 1.28.
The figure shows the case when Tinq scan = Tmin, which minimizes the latency.
As inquiry scan interval decreases, the average delay also decreases. Smaller in-
quiry scan interval results in more randomness, thus smoothing the curves. The fig-
ure also shows that as Tinq scan decreases, the minimum latency tends to converge.
For example, for Tmin = 0.16s, Tdiff ≈ 2.1s minimizes the latency to 1.39s; for
Tmin = 0.16s, Tdiff ≈ 1.7s minimizes the latency to 0.59s. Therefore, the inquiry
scan interval is a critical factor for the discovery latency.

In summary, for a given Tinq scan, we show that the optimalTmin is equal to Tinq scan,
and the optimal Tdiff can be found through simulations. The results show that op-
timal values are not multiple of 1.28s, and thus, the standard periodic inquiry mode
is suboptimal. We also show that the inquiry scan interval is one of the critical fac-
tors in determining the discovery latency. In general, by reducing Tinq scan, we can
minimize the discovery latency; e.g., Tinq scan = 0.32s has 2.53s. One caveat is
that this comes at the cost of more energy consumption. In fact, minimizing both
discovery latency and energy consumption is two conflicting goals. One of the con-
vincing solutions is to exploit the idea of sociological orbits, a probability mobility
model where people move between a set of hubs or information bazaars [12]. Drula
et al. propose adaptive energy conserving algorithms based on recent activity level
in hubs [10]. For given a set of discovery modes, from aggressive (fast discovery,
energy intensive) to lazy (slow discovery, low power consumption), nodes change
one’s mode based on the contact frequency. P2P content sharing shares the same
idea, and thus, for a given set of constraints, our results can be used to optimize
the algorithm. Note that readers can find the details of power consumption of each
Bluetooth operation in [6].

11

B luetooth Layer

Q uery
Processor

B lueTorrent U ser Interface

Peer M anager

Index
Data

C ollector
Pieces

B
T
 C
o
re

Fig. 7. BlueTorrent architecture

4 Bluetooth based content sharing protocol

The core components of BlueTorrent are presented in Figure 7, namely peer man-
ager, query processor, and data collector. The peer manager implements the peer
discovery/connection protocol and the peer selection protocol. The query proces-
sor resolves user queries by searching its index database as well as its neighbors’.
For a given file, the data collector uses a file swarming protocol to opportunistically
collect the file piece by piece. Finally, we provide a simple mathematical analysis
to show the feasibility of BlueTorrent in a dynamic environment with high churn
rate such as in subways or streets.

4.1 Peer Manager

The peer discovery/connection protocol is presented in Section 3. Given this, the
peer manager provides peer selection to the upper layer (i.e., query processor and
data collector). It manages its physical neighbors among which it tries to choose
the best peer. This is important because making a connection takes almost the same
amount of time as discovery. In BlueTorrent, a node keeps track of connections
for efficient peer selection, by logging connection frequency and duration. For a
given node, the log can be kept for a certain threshold period of time, or can be
exponentially aged. The main purpose is to rank the physical neighbors by using the
connection frequency/duration. A node is less helpful if the number of connections
is high, and the average connection duration is long. Thus, BlueTorrent give more
chances to those freshly encountered nodes.

Although the above procedure gives us the peer with more data to download, the
contact duration is determined by the physical distance among peers. It is preferable
to select a peer that has the longest residual contact duration, which can be calcu-
lated by the direction/distance among peers. However, it is nontrivial to support
the scheme without GPS or localization. Instead, BlueTorrent can be configured
to use the measured RSSI values of the inquiry responses to estimate the distance
among peers. RSSI values can be periodically collected as a result of peer discov-
ery. Peers are then labeled with their distance estimates. Thus, the peer manager

12

uses the distance estimate as the first criterion for peer selection. A group of nodes
within a certain threshold distance are then considered, and the best peer is selected
using the frequency/duration metric. Note that one can implement the distributed
localization using RSSI values given that the density of BlueTorrent users is high,
resulting more accurate peer selection.

4.2 Query Processor

The prerequisite of content distribution is to know where the content is. Content can
be searchable through indices which include a unique ID (e.g., 32 bit hash value
of the content), title, producer, media type, etc. A static BT AP is a publisher of
content, and it pushes index to mobile nodes. Users who are interested in specific
information can proactively query other peers. A user can express his request for
contents as a simple query string. For example, those who are interested in down-
loading a movie preview clip of “Pirates of the Caribbean” will prepare a query
string such as “Pirates & Caribbean” with media type “avi/mpg.” We assume that
BlueTorrent is equipped with a lightweight database for index management and
search. Since users have a limited, often local scope of files of interest, the size
of the indices is small. Thus, we can assume that the storage overhead of index
dissemination is minimal compared to the actual content size. Whenever a node
discovers another node, it first sends the query. Upon receiving a query, the target
node will look up its database to find an exact match of keys. The node could em-
ploy sophisticated similarity measures such as [14]. The meta-data match will be
automatically reported to the query originator, and the user may decide whether to
initiate downloading using the ID of the content.

4.3 Data Collector

BlueTorrent shares contents by using file swarming, mainly due to the limited band-
width and the short contact duration. The Bluetooth channel tends to be error-prone
in the urban streets due to multipath, WiFi interference etc. In addition, the short
communication range and mobility of users result in short link/contact duration. For
example, two peers moving opposite direction with 1m/s have 10 seconds of link
duration. Assuming that peer discovery and connection take 4 seconds, the max-
imum data size that they can symmetrically transfer is 286KB with DM5 mode.
Therefore, it is infeasible for mobile Bluetooth nodes to share a relatively large file
without using file swarming.

In BlueTorrent, the data source (i.e., static BT-AP) divides a file into K pieces or
blocks. BlueTorrent peers can download pieces from static BT-APs and other peers.
Each node has a bitmap of the available pieces for efficient piece reconciliation.
Whenever a connection is available, peers first exchange their bitmaps to find out

13

missing pieces through simple bit operations. The size of a typical bitmap is as
small as tens of bytes even if there are more than 100 blocks. To be more precise,
givenK pieces, the size of a bitmap table is �K/8� bytes. For example, the size of
a bitmap table for 100 blocks takes 13 bytes. Given 286KB of average data transfer
per contact with DM5 mode, the overhead is negligible. It is interesting to note
that when only one party has data to transfer, it uses asymmetric mode whereas a
symmetric mode is used when both have data to transfer.

The size of a piece should be carefully selected based on the characteristics of Blue-
tooth bandwidth and mobility patterns. If the block is too big, peers cannot down-
load a single block during their contact duration. A block can be divided into very
small sub-blocks, say, with size 1KB. However, this costs additional bandwidth and
computation overhead for sub-block level reconciliation. Through a simple mathe-
matical model we show that in the dynamic environment with limited bandwidth,
sharing a large file, i.e., a large number of blocks, leads to ineffective file swarm-
ing [15].

4.4 Dissemination Analysis

The behavior of our protocol can be analyzed using a simple mathematical model.
Due to space limits, we present several key results. For the sake of analysis, we
assume that in the system there exists only a single file. When a connection is
available, peers resolve their queries, exchange a single piece (instead of multiple
blocks), and finally disconnect. We have N nodes interested in downloading the
file, and K is the number of blocks. Let λ and µ denote the rate of rendezvous
(i.e., meeting) among those peers and the rate of departing the system (or content
sharing area) respectively. Our goal is to find how fast the index/data spreads with
such a dynamic environment as well as their survivability conditions. This can be
analyzed via a simple epidemic model used in [26]. We present the analysis of index
dissemination followed by content sharing. In both cases, let I denote the number
of infected peers, i.e., those who have a specific index or a piece.

A single infected node meets other susceptible nodes (i,e., nodes without an index
or a piece) with rate λ(N − I). Since I infected nodes are independently infecting
others/leaving the system, the total rate of infection and departure is λ(N − I)I
and µI respectively. Let us first calculate the number of peers having a specific
index. Since the rate of change solely depends on the total meeting rate, we have
İ = λ(N − I)I − µI . This differential equation is separable and can be solved
with the initial condition I0 (i.e., the number of BT-APs at the beginning) to give
the solution:

I(t) =
N − µ/λ

1 + (N − I0 − µ/λ)e−(λN−µ)t
(1)

The exponent of the denominator shows that as long as λN > µ, a random index
dissemination can reach all the peers. The initial number of nodes I0 does not have a

14

significant impact on the overall index dissemination compared to other parameters
such as λ and µ. In fact, it is more sensitive to the popularity of content (i.e., N).

The number of peers having a specific piece can be computed using a similar mod-
eled. Unlike index dissemination, an infected node cannot infect other encountered
nodes with probability 1 since we are swarming K blocks of a file and each con-
tact allows only a single piece exchange. At the very beginning, a node without
any piece will download a random piece with probability 1/K. On the other hand,
as the node collects blocks, it only tries to download remaining blocks. Since I(t)
nodes have a piece at time t and K pieces are spreading independently, a node has
a random piece with probability I(t)/N . The expected number of remaining blocks
is given as K(1 − I(t)/N). At time t a random node encountered by an infected
node will download a specific piece with probability 1

K(1−I(t)/N)
. Therefore, the

rate of change can be given as İ = λ(N − I)I 1
K(1−I(t)/N)

− µI = (λN
K
− µ)I . The

equation gives the following solution with the initial condition I0.

I(t) = I0e
(λ N

K
−µ)t (2)

From the equation, we conclude that the key condition of a piece dissemination is
λN

K
> µ. If the rate of departure is greater than λN

K
, a piece cannot survive in the

network. If N � K, we have a similar results as before, λN > µ. Otherwise,
for fixed λ and µ, the number of blocks K plays a key role in the survivability
of a piece. In other words, in the dynamic environment with limited bandwidth,
sharing a larger number of blocks (i.e., potentially large files) leads to ineffective
file swarming.

5 Simulation

In this section, we evaluate the performance of BlueTorrent using UCBT NS-2 ex-
tension, a Bluetooth simulator that is publicly available and open source. 5 UCBT
implements the majority of the protocols in the Bluetooth including baseband,
LMP, L2CAP, and BNEP.

5.1 Simulation Setup

Mobility – We assume Bluetooth device users are in a corridor that has a fixed
boundary. Users are moving with specific waypoint as from East to West or from
West to East. Waypoints are randomly chosen in the initial stage. Maximum speed

5 UCBT: https://www.ececs.uc.edu/cdmc/ucbt
NS-2: http://www.isi.edu/nsnam/ns/

15

Moving Area (Xr, Y r) [25, 50, 100] × [3, 5] m2

Number of Nodes(|N |) 25, 50, 75, 100

Number of AP Nodes (NAP) 2

Moving speed of nodes (S) [0.0, 0.4, 0.8, 1.2, 1.6] m/s

Packet type (P) DH5

Block Size/Number (BS , BN) [(6KB, 200), (12KB, 100), (24KB, 50)]

Transfer time (Tt) 10 sec

Table 1
Simulation Parameters

(0.0, 0.4, 0.8, and 1.6 m/s) is predefined to limit node’s speed. 1.6 m/s is selected
because this speed is 5.76 km/h and it is about 1.5 times faster than regular walking
speed. To add a random factor, direction is changed periodically with an offset in the
range [-10, 10] degrees with respect to the original direction. When a node reaches
North or South bound of a simulation area, it is mirrored back in the simulation
area. When a node reaches East or West bound, we regard that the node moves
out of corridor. So, we eliminate that node and regenerate a new node at the other
bound (for example, if a node went out of the East bound, a new node starts at the
West bound). The regenerated node has same speed and direction of the eliminated
node.

When a node is eliminated and a new node regenerated to substitute the eliminated
node, we choose reset or no-reset mode. The reset mode deletes all stored data in
the eliminated node and the regenerated node starts with empty data. So, it simu-
lates the situation where one node is going out of an area and a new node is coming
into the area. The no-reset mode, on the other hand, transfers all stored data from
the eliminated node to the regenerated node. So, it is as if the node going out of one
side re-enters from the other side.

Test Scenarios – There are two types of nodes: static APs and mobile nodes. APs
have all data set and transfer data to mobile nodes. They are randomly located in the
area. Mobile nodes start without data, and they pull data from APs or other mobile
nodes. In the AP mode, only the AP does inquiry and connects to mobile nodes and
transfers data. In the P2P mode, every node (AP or mobile node) can connect to
the other nodes and exchange data. Initially, only APs can transfer data. Received
data blocks from APs are then re-distributed in a P2P fashion. In the simulations,
APs distribute a single file. Since the transfer of meta-data is negligible compared
to data transfer, we assume that each node already has meta-data of a file.

Metrics – We measure the download finish time for no-reset mode. In the case
of reset mode, nodes usually are not able to download a file completely, instead,
we measure the progress using download percentage of all the nodes that have
passed the simulated area during the simulation. By dividing the summation of
the downloaded blocks by the nodes, we can calculate the expected number of
downloaded blocks. As time tends to infinity, by the strong law of large number,
this is equal to the ensemble average of the number of blocks that a random node

16

can download while passing by the simulated region.

Inquiry and Transfer Stages – In the Inquiry stage, nodes perform inquiry and
inquiry scan periodically (i.e., P2P mode). When a node discovers others, it chooses
one of the nodes as a master. Peer selection could be a potential problem. To deal
with this issue, each node keeps a connection log, which contains a list of peers with
discovered time and last connection time. If there are nodes without any connection,
the node randomly chooses one. Otherwise, it chooses the earliest connected node,
which potentially has met others and carries more fresh blocks than others. This
selection is automatically logged. Transfer stage begins after creating a connection
to the selected node. Nodes first exchanges block bitmaps, which contain flag bits
of data block, to identify useful blocks. If there are useful blocks, data blocks are
transferred. Otherwise, the connection is terminated. The master node then selects
another node and restarts the overall procedure. If there no more node to connect
to, it goes back to the Inquiry stage.

Parameter Summary – We choose as moving area a corridor model that has a
relatively long length compared to width. Unless otherwise mentioned, an area of
100×5m2 is used by default. The number of nodes varies to change density while
the number of AP is fixed to two. Nodes move at the speed up to 1.6 m/s. DH5
packet type is used because this has the highest data rate among all ACL packet
types in Bluetooth v1.2. We use 1.2MB size file to transmit and this file is divided
as 200, 100, or 50 blocks. Transfer time is set as 10 seconds to tradeoff between
reducing inquiry overhead and reducing out-of-range possibility during communi-
cation. When transfer time is long, inquiry overhead is reduced but nodes can be
exit the communication range more frequently during transmission. When trans-
fer time is short, inquiry overhead is increased. Details of parameters are shown in
Table 1.

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360 420 480 540 600

D
ow

nl
oa

d
P

er
ce

nt
ag

e
(%

)

Time (s)

Download Percentage vs. Time

P2P(0.8m/s)
AP(0.8m/s)

P2P(1.6m/s)
AP(1.6m/s)

Fig. 8. Download Percentage (reset)

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300

D
ow

nl
oa

d
P

er
ce

nt
ag

e
(%

)

Time (s)

Download Percentage vs. Time

P2P(0.8m/s)
AP(0.8m/s)

P2P(1.6m/s)
AP(1.6m/s)

Fig. 9. Download Percentage (no-reset)

17

 100

 200

 300

 400

 500

 600

 700

 0 0.4 0.8 1.2 1.6
D

ow
nl

oa
d

F
in

is
h

T
im

e
(s

ec
)

Speed (m/s)

Download Finish Time vs. Speed

P2P (Node=50)
P2P (Node=25)
AP (Node=25)

Fig. 10. Finish Time vs. Speed

5.2 Simulation Results

In this section, we mainly compare the performance of P2P and AP modes. The
overall download progress is first presented to show the benefits of the P2P mode.
We then show the impacts of various parameters, namely the average speed of mo-
bile nodes, the number of blocks, and the corridor length.

Overall download progress – Figure 8 and Figure 9 show average download per-
centages of both reset and no-reset modes for every 10 seconds. Total 50 nodes
are moving in an area of 100×5 m2, and one hundred blocks are used. The figure
shows that the P2P mode has three times better performance than the AP mode.
Multiple peer-to-peer connections increase transmission chances and throughput.
In the case of no-reset, although at the beginning nodes collect blocks almost lin-
early over time, after passing around 50%, we see that it takes progressively longer
to collect new blocks. This problem is known as a coupon collection problem: the
more the coupons you collect, the higher is the probability of collecting an overlap-
ping coupon. This problem can be mitigated by using coding techniques, namely
source or network coding [8][20]. Evaluating these techniques is part of our future
work. In [18], readers can find some preliminarily results of using network coding
in mobile ad hoc networks.

Impact of speed – Figure 10 shows average download finish time of nodes. 100×5
m2 moving area and 100 Blocks are used. The figure shows that as speed increases
the download finish time increases. When nodes are static (i.e., speed = 0.0m/s),
the density of nodes is critical; if it is below a certain threshold, some nodes may
not be able to download any blocks. In the case of the P2P mode, the average
finish time is not sensitive to density of nodes. Interestingly, the AP mode has an
optimal speed that minimizes the download finish time. Two APs are shared among
all the nodes. If nodes move slowly, it is possible that at some point AP is idle
(owing to low density, N=25). The idle period is mainly dependent on the speed; as
speed increases, the idle period decreases. However, if a node moves too fast, the
effectiveness of a connection, which is calculated by dividing the data transfer time

18

by the total connection duration (i.e., discovery+data transfer), decreases. Thus,
fast mobility adversely affects the performance. The figures shows that when nodes
move at the speed of 0.8m/s on average, the AP mode has the best performance.

Figure 11 shows average numbers of helpful connections and unhelpful connec-
tions of nodes. 25 nodes are moving in an area of 100×5m2 and share a 100 block
file. The number of unhelpful connections for P2P mode significantly decreases,
as speed increases. Fast mobility blends nodes well, thus reducing the chances of
having unhelpful connections. The AP mode also experiences a slight decrement
of the number of unhelpful connections, since the total number of connections is
much smaller than that of P2P case. On the other hand, the number of helpful con-
nection increases up to a certain threshold (P2P case 0.8m/s, AP case 0.4m/s).
Thus, we conclude that the gain of fast mobility comes from the relative increment
of helpful connections.

Figure 12 shows average lifetime of nodes. 100×5m2 Moving area, 50 nodes, and
100 Blocks are used for this test. As speed increases, lifetime decreases because
node reset is more frequent. As corridor length increases lifetime increases because
node reset is less frequent.

 0

 5

 10

 15

 20

 25

 30

 0 0.4 0.8 1.2 1.6

C
on

ne
ct

io
ns

Speed (m/s)

Connections(Helpful, Unhelpful) vs. Speed

P2P Helpful
AP Helpful

P2P UnHelpful
AP UnHelpful

Fig. 11. Connection status

 0

 50

 100

 150

 200

 250

 300

 0 0.4 0.8 1.2 1.6

Li
fe

tim
e

(s
ec

)

Speed (m/s)

Lifetime vs. Speed

Length = 25m
Length = 50m

Length = 100m

Fig. 12. Lifetime

 0

 20

 40

 60

 80

 100

 0 0.4 0.8 1.2 1.6

D
ow

nl
oa

d
P

er
ce

nt
ag

e
(%

)

Speed (m/s)

Download Percentage vs. Speed

P2P (BL=50)
P2P (BL=100)
P2P (BL=200)

AP (BL=50)
AP (BL=100)
AP (BL=200)

Fig. 13. Number of blocks

 0

 20

 40

 60

 80

 100

 0 0.4 0.8 1.2 1.6

D
ow

nl
oa

d
P

er
ce

nt
ag

e
(%

)

Speed (m/s)

Download Percentage vs. Speed

P2P (L=25)
P2P (L=50)

P2P (L=100)
AP (L=25)
AP (L=50)

AP (L=100)

Fig. 14. Corridor length

Impact of the number of blocks – Figure 13 shows average download percentage
of nodes at the 200 second mark as a function of speeds with different number

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 60 120 180 240 300 360 420 480 540

D
ow

nl
oa

d
P

er
ce

nt
ag

e
(%

)

Time (s)

Download Percentage vs. Time

P2P(0.8m/s)
AP(0.8m/s)

P2P(1.6m/s)
AP(1.6m/s)

(a) reset

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360 420 480

D
ow

nl
oa

d
P

er
ce

nt
ag

e
(%

)

Time (s)

Download Percentage vs. Time

P2P
AP

(b) no-reset

Fig. 15. Download Percentage (Testbed)

of blocks. In general the download percentage is not sensitive to the number of
blocks. Although the overhead of L2CAP level acks increases as the number of
blocks increases, its impact is not significant. Instead, mobility has a greater impact.
With fast mobility a node will experience more frequent disconnections, causing
cancelation of the currently downloaded block. If the size of a block is large, this
will incur non-negligible performance degradation. Thus, when the speed is 1.6m/s,
the largest block size (BL=200) performs the best.

Impact of the corridor length – Figure 14 shows download percentage of nodes
at the 200 second mark with different corridor length. When nodes are static (0.0
m/s), there is no mobility; thus, node reset does not happen. So, length of corridor
only affects density of nodes and short corridor length shows better performance.
When nodes are mobile (0.4-1.2 m/s), short corridor length makes more frequent
node reset than longer ones therefore decreases download percentage. Note that
density increment in the P2P mode has much greater impact on the performance.
As explained before, the performance of the AP mode is not significantly improved
by the density after a certain threshold.

6 Experiments

In this section, we show our preliminary testbed implementation results. In the
experiment, we use BlueZ Bluetooth protocol stack for Linux 6 and Bluetake
BT009Si (Silicon Wave, Bluetooth v1.2). BlueZ consists of HCI Core, HCI USB
device driver, L2CAP protocol module, and testing utilities. We used 3 desktops
and 5 laptops which have RedHat 9.0 with similar configurations of Pentium IV
with 512MB RAM. We place two nodes around the AP, and the rest of the nodes
are located about 10m away from the AP.

6 http://www.bluez.org

20

To emulate mobility we use the following method. The AP is up for a certain per-
centage of a given period, and for the rest of the period it is down. This emulates
nodes moving out of the AP’s communication range. During this period (i.e., when
AP is down), only P2P mode can transfer data. Similar to the simulation section,
we use the lifetime of the nodes that are moving at maximum speeds of 0.8m/s and
1.6m/s in a 100m length corridor. Nodes are reset at the end of their lifetime to
emulate the maximum moving speeds.

Figure 15 shows average download percentage of nodes every 10 seconds. For Fig-
ure 15(a), nodes are reset according to the lifetime model. But, for Figure 15(b),
they are not reset. P2P mode shows about twice better performance than AP mode
because multiple simultaneous peer-to-peer connections increase transmission chances
and throughput. In Figure 15(a), the download percentages of both mode increase
fast at the beginning, because all nodes have no data. After a while, AP case down-
load percentage drops because AP is down (i.e., nodes are out of AP’s communica-
tion range). However, P2P case download percentage continues to increase because
of simultaneous transmissions among nodes. In the figure, the AP down period is
shown by non-changing download percentage of AP mode. When reset happens,
new nodes are generated and thus the average download percentage drops for both
AP and P2P cases. In AP mode, this drop shows steeper slope than in P2P case
if AP is down during this period. Reset does not happen in Figure 15(b) and thus
decrement of download percentage does not happen. However, we still have AP
down period in which AP mode shows no change in download percentage during
this period. P2P case continuously increases and the average download percentage
reaches 100% far earlier than AP mode. AP mode does not reach 100% average
download percentage during the test time.

7 Discussion and Future Work

Power Consumption: Inquiry and inquiry scan are the most power consuming
state of BlueTorrent and thus it is important to minimize unsuccessful device dis-
covery attempts. The selection of optimum settings shown in Section 3 allows to
reduce such failed attempts to discover the highest number of available devices in
communication range. Note that power consumption is also different among states
of the BT device as shown in [19]. Let us analyze the power consumption of both
the client/server and P2P models. Let t denote the total amount of time spent for
peer discovery for both cases and t′ denote the total amount of time for data transfer.
In the client/server model, the master performs the inquiry for t seconds and thus, it
will spend t×Cinq. The slave node only scans during t seconds, and its power con-
sumption is 	 t

1.28s

×11.25×10−3s×Cscan +[t−	 t

1.28s

×11.25×10−3s]×CIdle.

After a connection is established, both cases will spend additional t′ × Cdata for
data transfer. These equations clearly show that a master (i.e., inquiry) consumes
much more energy than a slave (i.e., scan).

21

Power consumption of the P2P mode can be analyzed as follows. In the P2P mode,
each node repeats inquiry and inquiry scan. In Section 3.2, we show that the length
of each trial can be represented as Tw inq + Tdiff/2. In other words, for a given
period t, a node spends αinq =

Tw inq

Tw inq+Tdiff /2
fraction of time t for inquiry and

αscan = 1 − αinq for inquiry scan. Thus, the total power consumption is given as
follows:

αinq × t × Cinq +
⌊

t(1 − αinq)
1.28

⌋
× Cscan × 11.25 × 10−3s+

(1 − αinq)
(

t −
⌊

t

1.28

⌋
× 11.25 × 10−3s

)
× Cidle + t′ × Cdata

(3)

Given the above equations, we now present the feasibility of our application on
mobile devices. We use the following measured values for calculation as shown in
[19]: Cinq = 38mAs, Cidle = 20mAs, Cscan = 48mAs, and Cdata = 35mAs.
Let αinq be 1/2. Assume we used our application one hour each of data trans-
fer and inquiry/scan in P2P mode. We spend 126, 000mAs for data transfer and
104, 858.71mAs for inquiry/scan. The total power consumption is 230, 856.71mAs
that is approximately 64.13mAh. The amount of power used by the application is
quite reasonable and it does not drain the battery since the most of recent cellular
phone such LG chocolate phone have 800mAh standard battery size and Motorola
MOTOKRZR K1m have 880mAh battery size. The power consumption of LG
chocolate phone during two hours usage is approximately 457.14mAh and com-
pare to our result, our application’s power consumption is very small. Therefore,
this result shows that our application is feasible on mobile devices.

Since inquiry consumes more energy than inquiry scan, we propose the following
adaptive peer discovery scheme. Initially, all nodes are in their scan modes. Nodes
passing by an AP opportunistically are connected. This makes the connected clients
to activate the P2P mode. Activated peers can connect/activiate other peers. The
inquiry and scan intervals are dynamically adjusted based on the contact frequency.
Note that evaluating this simple energy conserving scheme is part of our future
work.

Another factor for power consumption is Bluetooth packet types for data trans-
mission. According to [9], the more the slots for a given packet, the higher is the
transmission power. The energy consumption per bit, however, is higher in the case
of using multiple slot packets. Thus, it is preferable to use multiple slot packets, if
possible.

User Cooperation: BlueTorrent uses peer-to-peer file sharing that requires users’
cooperation. In [24], 25% of Gnutella clients do not share any files and 40-60% of
Napster peers share only 5-20% of the shared files, which indicates that there is a
large amount of free-riding.

To prevent this selfish peers, several incentive methods were proposed. Cash-based

22

systems are too complex while lighter-weight credit mechanisms have not provided
strong incentives for cooperation. In [13], to solve free-rider problem in peer-to-
peer file sharing construct a formal game theoretic model and analyze equilibria of
user strategies under several novel payment mechanisms. In [2], exchange-based
incentive mechanisms were proposed for cooperation in peer-to-peer file sharing
networks. Peers give higher service priority to requests from peers that can pro-
vide a simultaneous and symmetric service in return. They showed exchange-based
incentive mechanisms can provide string incentives for sharing and reduce free-
riders. In [17], Signature-Seeking Drive (SSD), a secure incentive framework was
proposed for commercial ad dissemination in Vehicular ad hoc networks. SSD does
not rely on tamper-proff hardware or game theoretic approaches, but using Public
Key Infrastructure to provide secure incentives for cooperative nodes.

For BlueTorrent, general P2P or Bluetooth P2P specific incentive methods can be
applied to reduce free-riders and increase cooperation. We will implement incentive
mechanism in the future and improve BlueTorrent more efficiently.

8 Related work

The P2P mode introduced in our paper is also known as symmetric discovery
mode since each device alternates their roles as master and slave. To this end,
Periodic Inquiry Mode HCI command was introduced as of Bluetooth speci-
fication v1.0. Inquiry window size (Tw inq) is fixed and the inquiry period (i.e., the
interval in between two consecutive inquiries) is chosen uniform randomly over
[Tinq min, Tinq max]. To find average discovery latency, Salonidis et al. [23] sim-
plified the model, making it analytically tractable: both inquiry and inquiry scan
interval are treated random, and inquiry scan interval (Tinq scan) is not considered.
But the model hardly reflects a real Bluetooth device, and it cannot be used to op-
timize the periodic inquiry mode. In fact, it is non-trivial to analytically model the
system. In this paper, we accurately simulate the mode and find the optimal param-
eter configuration. Moreover, we show that the inquiry scan interval, which was
neglected in [23], has a great impact on the average latency. Instead of optimizing
the periodic inquiry mode, Siegemund et al. [25] proposed a cooperative peer dis-
cover protocol. A few nodes per piconet perform cooperative discovery; i.e., each
node inquires others and then, proactively exchanges the results. Our finding can
be applied to this scheme to further expedites the discovery.

Bohman et al. [4] proposed a variant of the periodic inquiry mode: for each round,
the duration of inquiry and inquiry scan states is randomly selected over [min, max].
Similarly, in [10], the duration of inquiry and inquiry scan states is chosen over
[Cinq, Cinq + 2Vinq] and [Cscan, Cscan + 2Vscan] respectively, where Cinq/scan rep-
resents the fixed part and Vinq/scan the variable part. We assume that these variants
were proposed because the authors were unaware of the periodic inquiry mode in

23

the specification.

Aalto et al. introduces a B-MAD system for delivering permission-based “location-
aware” mobile advertisements to mobile phones using Bluetooth positioning and
Wireless Application Protocol (WAP) Push [1]. They installed nine Bluetooth sen-
sors (Nokia 3650 phones running the Bluetooth Sensor software) in the display
windows of eight retail stores. The store produced eleven advertisements contain-
ing some special offers and discounts. They measured positioning time (time to
discover a new device), positioning accuracy, scalability, and latency.

BlueCasting is a widely accepted proximity marketing system. 7 BlueCasting servers
can be deployed at poster sites, retails, etc. such that it can identify Bluetooth
users and deliver tailored messages. The advertisement log is managed in a central
database in order to prevent receiving redundant advertisements. BlueBlitz Magic
Beamer supports similar functionalities. 8 In particular, it provides two way mes-
saging/advertisements and the Internet access as a hotspot. Although these devices
support class 1, i.e., 100m communication range, typical Bluetooth devices only
support class 2, i.e., 10 m, and thus, mobility of users has a huge impact on the
performance. As mentioned before, with an error-prone channel due to multipath,
WiFi interference etc., downloading bandwidth is limited; downloading several
mega byte files without stopping near the APs is not feasible. BlueTorrent reme-
dies this problem by letting mobile users cooperatively carry and forward data to
minimize downloading delay.

A Bluetooth Content Distribution (BCD) station supports content distribution in
a “static” environment such as a bus [16]. A BCD station is also equipped with
WiFi, and with help of opportunistic connections, it can be synchronized. Once
synchronized, data will be distributed to the Bluetooth end users while they are on
board. Like other previous products, BCD does neither consider P2P-based content
distribution, nor mobility of users.

9 Conclusion

In this paper we proposed BlueTorrent, a cooperative content sharing for mobile
Bluetooth users. We analyzed and found the optimum setting for the periodic in-
quiry mode in order to minimize inquiry/connection time. We then proposed and
analyzed index dissemination and file swarming protocols in dynamic, sparse net-
works. Simulation results showed that cooperative P2P file sharing achieves a greater
performance improvement in download time compared to the traditional AP only
mode. Finally, via testbed experiments we showed the feasibility of BlueTorrent.

7 BlueCasting: http://www.bluecasting.com
8 BlueBlitz: http://www.blueblitz.com

24

References

[1] L. Aalto, N. Gothlin, J. Korhonen, , and T. Ojala. Bluetooth and WAP Push Based
Location-Aware Mobile Advertising System. In MobiSys’04, Boston, NY, Jun. 2004.

[2] K. Anagnostakis and M. Greenwald. Exchange-based incentive mechanisms for peer-
to-peer file sharing. In 24th International Conference on Distributed Computing
Systems (ICDCS’04), Tokyo, Japan, March 2004.

[3] BBC NEWS: Music trial taps into Bluetooth. http://news.bbc.co.uk/1/hi/
technology/4392534.stm.

[4] D. Bohman, M. Frank, P. Martini, and C. Scholz. Performance of Symmetric Neighbor
Discovery in Bluetooth Ad Hoc Networks. In German Workshop on Mobile Ad-hoc
Networking (WMAN’04), Ulm, Germany, Dec. 2004.

[5] Bluetooth SIG. Bluetooth Specification v2.0, 2004.

[6] J.-C. Cano, J.-M. Cano, E. Gonzalez, C. Calafate, and P. Manzoni. Power
Characterization of a Bluetooth-based Wireless Node for Ubiquitous Computing. In
ICWMC’06, Bucharest, Romania, July 2006.

[7] CBS Goes Bluetooth To Promote Fall TV Line-Up. http://www.telecomweb.
com/tnd/18847.html.

[8] P. Chou, Y. Wu, and K. Jain. Practical Network Coding. In 51st Allerton Conf.
Communication, Control and Computing, Allerton, Oct. 2003.

[9] DARFON Bluetooth Module Data Sheet Aug 2005 v1.1. http://www.darfon.
com.

[10] C. Drulă. Fast and Energy Efficient Neighbour Discovery for Opportunistic
Networking with Bluetooth. Master Thesis, Dept. of Computer Science, University
of Toronto, 2005.

[11] The Economist: Bluetooth’s quiet success. http://www.economist.com/
science/tq/displayStory.cfm?story_id=7001843.

[12] J. Ghosh, S. Yoon, H. Q. Ngo, and C. Qiao. Sociological Orbit for Efficient Routing in
Intermittently Connected Mobile Ad Hoc Networks. In Technical Report TR-2005-19,
University at Buffalo, Apr. 2005.

[13] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives for sharing in
peer-to-peer networks. Lecture Notes in Computer Science, 2232:75+, 2001.

[14] T. Hofmann. Probabilistic Latent Semantic Analysis. In UAI’99, 1999.

[15] S. Jung, U. Lee, A. Chang, D. Cho, and M. Gerla. BlueTorrent: Cooperative Content
Sharing for Bluetooth Users. Technical report, UCLA, Dec. 2006.

[16] J. LeBrun and C.-N. Chuah. Feasibility Study of Bluetooth-Based Content
Distribution Stations on Public Transit Systems. In ACM MobiShare’06, Los Angeles,
CA, Sept. 2006.

25

[17] S.-B. Lee, G. Pan, J.-S. Park, M. Gerla, and S. Lu. Secure incentives for commercial
ad dissemination in vehicular networks. In The Eighth ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc ’07), Montreal, Canada,
September 2007.

[18] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla. CodeTorrent: Content Distribution
using Network Coding in VANETs. In MobiShare’06, Los Angeles, CA, Sept. 2006.

[19] J. B. L. Negri and M. Dyer. The Power Consumption of Bluetooth Scatternets. In
IEEE Consumer Communications and Networking Conference, pages 519–523, Jan.
2006.

[20] P. Maymounkov and D. Mazieres. Rateless Codes and Big Downloads. In IPTPS’03,
Berkeley, CA, Feb. 2003.

[21] B. S. Peterson, R. O. Baldwin, and J. P. Kharoufeh. Bluetooth Inquiry Time
Characterization and Selection. IEEE Transactions on Mobile Computing, 5(9):1173–
1187, Sep. 2006.

[22] S. M. Ross. Introduction to Probability Models. Academic Press, 2002.

[23] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. O. LaMaire. Distributed Topology
Construction of Bluetooth Personal Area Networks. In INFOCOM, Anchorage, AK,
Apr. 2001.

[24] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer
file sharing systems. Technical Report UW-CSE-01-06-02, Dept. of Computer Science
and Engineering, Univ. of Washington, July 2001.

[25] F. Siegemund and M. Rohs. Rendezvous Layer Protocols for Bluetooth-Enabled Smart
Devices. Personal and Ubiquitous Computing Journal, 7(2):91–101, Jul. 2003.

[26] T. Small and Z. J. Haas. The Shared Wireless Infostation Model - A New Ad
Hoc Networking Paradigm (or Where There is a Whale, There is a Way). In ACM
MOBIHOC’03, Annapolis, Maryland, USA, June 2003.

[27] W. Stallings. Wireless Communications and Networks. Prentice Hall, 2005.

26

Sewook Jung received B.S. in Physics and M.S. in Computer Engineering from
Seoul National University in 1996 and in 1998, respectively, and received Ph.D.
degree in Computer Science from University of California, Los Angeles in 2007.
He worked at Samsung Electronics from 1998 to 2003. He will start working at
Broadcom Corporation from 2007. His research interests are Wireless Personal
Area Networks (Bluetooth, ZigBee, Wibree, and UWB), HealthNet, Ubiquitous
Computing, and Network Protocols.

Uichin Lee received the B.S. in computer engineering from Chonbuk National Uni-
versity in 2001, and the M.S. degree in computer science from Korea Advanced
Institute of Science and Technology (KAIST) in 2003. He is currently a Ph.D. can-
didate with the Department of Computer Science, University of California, Los
Angeles. His research interests include ”mobile” wireless sensor networks, e.g.,
vehicular and underwater sensor networks, and user behavior studies, e.g., P2P and
web search. He is currently working on vehicular sensor networks with his advisor
Prof. Gerla in Network Research Lab (NRL).

Alexander Chang received the B.S. degree in Computer Science and Applied
Mathematics from University of Washington in 2003, and the M.S. degree in Com-
puter Science from University of California, Los Angeles, in 2006. He is currently
pursuing the Ph.D. degree in Computer Science at University of California, Los An-
geles. His research interests are Wireless Sensor/Personal Networks and Wireless
Network Security.

Dae-ki Cho received BS degree in Computer Science from University of Califor-
nia, Los Angeles in 2006. He is currently pursuing master’s degree in the Depart-
ment of Computer Science at University of California, Los Angeles. His research
interests are Wireless Sensor/Personal Networks, Underwater Networks, and Data
Minings. He is currently working on Bluetooth P2P with his advisor Prof. Gerla in
Network Research Lab (NRL).

Mario Gerla received a graduate degree in engineering from the Politecnico di Mi-
lano in 1966, and the M.S. and Ph.D. degrees in engineering from UCLA in 1970
and 1973. He became IEEE Fellow in 2002. After working for Network Analysis
Corporation, New York, from 1973 to 1976, he joined the Faculty of the Com-
puter Science Department at UCLA where he is now Professor. His research inter-
ests cover distributed computer communication systems and wireless networks. He
has designed and implemented various network protocols (channel access, cluster-
ing, routing and transport) under DARPA and NSF grants. Currently he is leading
the ONR MINUTEMAN project at UCLA, with focus on robust, scalable network
architectures for unmanned intelligent agents in defense and homeland security
scenarios. He is also conducting research on scalable TCP transport for the Next
Generation Internet (see www.cs.ucla.edu/NRL for recent publications).

1

* Author Biography

Fig. 1. Sewook Jung Fig. 2. Uichin Lee Fig. 3. Alexander Chang

Fig. 4. Dae-ki Cho Fig. 5. Mario Gerla

1

* Author Photo

List of Changes

Reviewer #1: This is a very well-written paper, covering well most of the relevant
aspects of using Bluetooth to support ”torrent”-like sharing mechanisms.

I’m not an expert in communication and discovery mechanisms, so I will decline to
comment on those issues. But by being an expert on HCI issues related to mobile
computing, it seems that this paper fails to address a fundamental issue that has
huge issues in terms of adoptance: power consumption. Unlike in BitTorrent, which
often runs on desktop machines directly connected to power, a ”torrent”-like system
in a mobile device has the potential to draw all the energy of one’s battery... for
the benefit of other people! So unless the power consumption of such a system is
reasonable to the point of not impacting a user’s everyday usage, it is very unlikely
that people will adopt this technology. And since battery capacity is not increasing
in a fast rate, that would mean that this technology would be dead before even
starting.

So I would like the authors to include a sub-section discussing power issues related
to having a mobile device (such as a cell-phone) doing bluetooth sharing, and how
the battery span of such a device would be impacted. Some basic estimation is
needed here to make an argument, considering for instance, how much data could
be shared before draining 20% of a typical cell phone in your simulations, and how
long that would take. This would give the reader a better understanding of the real
possibilities of this technology in the real world.

Section 7 is added and discuss the power consumption of BlueTorrent compared
to that of cellular phone calling. BlueTorrent can be used more than 12 hours in
regular cellular phone and power consumption is negligible.

Reviewer #2: The authors look at the problem of implementing a mobile P2P net-
work over multiple Bluetooth devices. In particular, the paper analyzes the Blue-
tooth discovery process, and finds the optimum inquiry and connection time set-
tings that in simulation, and in preliminary experiments, work for this application.

The paper is very well written, and includes a nice overview of Bluetooth with
particular attention to the discovery process. I believe the paper is self-contained,
in that someone who is not familiar with Bluetooth should be able to work through
the paper.

The biggest weakness of the paper is that their approach has only been implemented
in a very contrived setting (3 desktop computers and 5 laptops, with AP’s being
brought up and down periodically to simulate mobile devices coming in and out of

1

* Manuscript

range). It’s hard to say whether the paper’s findings would hold up under a more
realistic deployment.

Of course, it is very difficult to deploy such a system in a more realistic way, since
software to support the system would have to be installed on a reasonable percent-
age of the mobile devices before this particular P2P network would be useful. It
also remains to be seen whether (1) people will consent to having their phones used
in this way, (2) people desire to pull down media files and other files in this fashion
and (3) that providers would cooperate (I think that is probably required). But these
concerns are primarily outside the scope of the present work; one should consider
this paper as an examination of whether Bluetooth is up to the task, given that sys-
tem software developers can tweak some of the timings here and there. I think the
conclusion of the paper is that it is up to the task, but that there are some lingering
doubts about power consumption.

Section 7 describes some incentive methods already proposed for P2P file sharing
network and Car-to-Car network in the other papers. These already proposed or
Bluetooth specific incentive methods are applied to BlueTorrent in the future, and
increase cooperation of users.

Ultimately, I think the paper is a useful analysis of the Bluetooth discovery process
and is illuminating in how it brings out some of the relevant parameters that are
available to system software developers. An analysis of how power consumption is
affected by the various settings would complete the picture, but perhaps that is too
much for one paper.

Section 7 is added and discuss the power consumption of BlueTorrent compared
to that of cellular phone calling. BlueTorrent can be used more than 12 hours in
regular cellular phone and power consumption is negligible.

2

