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ABSTRACT 

Double loop network architectures offer higher 
performance and reliability than single loop networks. 
In this paper, a double loop network which is optimal 
among all double loops is described. This network to- 
pology consists of a loop in the forward direction con- 
necting all the neighboring nodes, and a backward loop 
connecting nodes that are separated by a distance [~/N], 
where N is the number of nodes in the network. We 
show that this network is optimal in terms of hop dis- 
tance between nodes, delay, throughput, and terminal 
reliability. The paper includes derivation of closed form 
expressions for the maximum and average hop distance 
between nodes, number of distinct routes between two 
farthest nodes, and throughput. The effect of node and 
link failures on network performance is also considered. 

failure partitions the network. Another disadvantage is 
the fact that some messages must travel along the entire 
loop before reaching their destinations. This affects the 
delay performance. 

In order to improve reliability and performance 
of loop networks, double loop architectures have been 
proposed. Liu proposed a Distributed Double Loop 
Computer Network (DDLCN) [LIU 78, WOLF 79a], 
which is designed as a fault-tolerant distributed system, 
and claimed to have achieved better reliability as well as 
better communications performance than any other 
loops. More recently, another double loop network, 
called daisy-chain loop, was proposed by Grnarov et. al, 
[GRNA 80]. This network was shown to be superior to 
DDLCN, in terms of reliability and communications 
performance in both fault free and fault mode of opera- 
tion [GRNA 80]. 

1. INTRODUCTION 

Local area networks have been extensively used 
in recent years to support distributed processing. One 
of the key design issues is the identification of a net- 
work topology which is best suited for a variety of 
different applications. Loop or ring architectures are 
quite popular, since they require simple control software 
and provide high data transfer rates. Many loop net- 
work architectures have been described in the literature, 
some using centralized control, others using distributed 
control [FARM 69, PIER 72, OHLI 77]. In this paper, 
we consider a loop operated in the "check and forward" 
mode [GRNA 80]. Referring to Figure 4, the destina- 
tion address of each received message is checked to 
determine the output channel (either to the local host, 
or to a neighboring node) onto which the message 
should be forwarded. If the channel is free, the mes- 
sage is forwarded "on the fly", without buffering. Other- 
wise, the message is stored in a delay insertion register, 
waiting for the channel to become free. 

A major disadvantage of a unidirectional single 
loop system is vulnerability, since any link or interface 
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In this paper, we present a generalized double 
loop network, which is optimal among all double loop 
topologies. The DDLCN and daisy-chain become spe- 
cial cases of the proposed generalized network. We 
present the analysis of the optimal network and derive 
closed form expressions for maximum number of hops, 
average number of hops, and throughput. We also 
study the effects of node and link failures and show the 
improvements obtained with respect to the daisy-chain 
loop. 

2. OPTIMAL DOUBLE LOOP NETWORK 

The optimal double loop consists of a forward 
loop connecting all the neighboring nodes and a back- 
ward loop whose interconnection pattern depends on N, 
the number of nodes in the network. As shown later, 
for optimum performance and reliability the skip dis- 
tance of the backward loop is I ~ 1 ,  where skip distance 
is the hop distance (measuredt ion the forward loop) 
between two nodes which are adjacent in the backward 
loop. Except for the fact that skip distance is a function 
of N, all other features are similar to those of the 
daisy-chain loop [GRNA 80]. The proposed topology 
for a 15-node network is shown in Figure 1, where the 
skip distance in the backward loop is 3. For comparison 
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purposes, a 15-node daisy-chain loop network is shown 
in Figure 2, and a 15-node DDLCN is shown in Figure 
3. 

Figure 3. 

A 15-node Distributed Double Loop Computer Network 

Figure I. A 15-node Optimal Loop Topology 

Figure 2. A 15-node Daisy-Chain Loop Network 

In the optimal loop network, both forward and 
backward links are active, and there exist several paths 
from a source to a destination. The network can 
tolerate several link and nodal interface failures before 
becoming partitioned. Intuitively, delay and reliability 
are improved since the skipping of  several nodes creates 
"short cuts", and also provides more alternate paths. 
We will prove this more rigorously later in the paper. 

The functional organization of  a loop interface is 
shown in Figure 4. An interface receives messages 
from the host it is connected to. It also receives mes- 
sages relayed by the neighboring interfaces. Conflicts of 
the s imultaneous arrivals of  messages from the three 
streams are resolved in the same way as in DDLCN 
[WOLF 79b], i.e., by delaying incoming relayed mes- 
sages in variable-length shift registers located in the loop 
interface. To achieve better reliability, a loop interface 
is split into two identical modules which have separate 
control and separate line dr iver / receiver  (D/R) .  Both 
modules share transmitter (T)  and receiver (R) for 
communicat ions  with the host (H) connected to this in- 
terface. 

4 .  

BL O u t p u t /  \ BL Input 

I 
t I 
\ i 
\ / 

FI. input ~ / / FL Output 

Figure 4. Functional Organization of a Loop Interface 
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In the message format shown in Figure 5, the 
destination address field is used in selecting the path. If 
the destination address matches with the interface ad- 
dress, the message is removed from the loop and routed 
to the host. Otherwise, the message is forwarded one 
"short" step (on the forward l o o p ) o r ,  when appropriate,  
one "giant" step (on the backward loop). Messages cir- 
culate on the loops until they reach their intended desti- 
nations. An adaptive routing algorithm can be used to 
route messages when there are failures in the network. 

F : o o i . d ~  e , , n , o l  o,t, c a c  ~ l o g  

l~, 

Figure 5. A Message  Format 

3. M A X I M U M  A N D  A V E R A G E  N U M B E R  OF H O P S  

Recall that both forward and backward loop are 
unidirectional,  with the forward loop connecting adja- 
cent nodes and the backward loop connecting nodes at 
hop (i.e., skip) distance h > 1. The shortest route 
between a source and a destination may therefore in- 
volve a combinat ion of  forward and backward hops. 
For each node, there is some other node which is di- 
ametrically opposite, i.e., it is the farthest away in the 
hop distance sense. Indeed, in designing the backward 
loop topology, the skip distance h will be selected such 
that the diameter  d, i.e., the maximum over all node 
pair distances i.s minimized. Clearly, the hop distance 
from a node to all other nodes will vary from 1 to d. In 
the following we derive expressions for maximum and 
average number  of  hops and find their opt imum values. 

Let N be the number  of  nodes in the network; 
h be the skip distance in the backward loop; 

and d be the diameter.  

We want to choose h so as to minimize,  
d = diameter  = max d,~ over all i,j. 

where d, is the shortest hop distance from node i to 
node j. 

T h e  nodes in the network are numbered  from 0 
to N-1. To get the shortest path between i and j we use 
backward hops as long as it is advantageous. For  two 
diametrically opposite nodes, backward hops are advan- 
tageous as long as d is greater than (N-bh) ,  where b is 
the number  of  backward hops used. In addition to the 
backward hops, h-1 forward hops will be required to 
reach the farthest node. The relationship between max- 
imum number  of  hops d and skip distance h is, 

d =  N -  ( d -  /1 + 1)h + ( h -  1) 

d =  N -  dh + I12- 1 

l N l  d =  ~ + ( / 1 - 1 )  

For d to be minimum, the opt imum value of  h is I,/N]. 

If h = 1, we get Liu 's  DDLCN of diameter  d = [N/21; 

l f h  2, w e g e t d a i s y - c h a i n o f d i a m e t e r d =  [ N l + l .  

The average number  of  hops is defined as, 

1 J 1 
"N ,=0 ( N -  1~- do 

where d,, = O. 
As the network is symmetric ,  the term in parentheses is 
the same for all nodes i, thus: 

1 N-I 
Avg. no. of  hops -- ( N -  1) Y':d,j for an arbitrary i. 

i=u 
N - I  

Thus we need to calculate the sum S = ~ a~j of  the dis- 
./ =0 

tances to all other nodes in the network. Note that we 
always consider the shortest  distance between any node 
pair. Recall that the max imum number  of  backward 
hops used in any route is, 

Using this result we have, 

S =  [1 +2 +3  +....+ ( N -  b h -  1)1 + [1 +2 +....+ /11 
+ [2 + 3 +....+ (/1 + 1)] .... + [b + (b + 1) +....+ (b + b - 1)] 

Each term in the sum corresponds to a route with 0, 1, 
2 . . . . .  b number  of  backward "giant" hops (i.e., steps on 
a backward loop) respectively. 

Manipulating the previous expression,  we obtain: 

s = [1 +2 +3  +....+ ( N -  b h -  1)1 

+ h(l + 2 +....+ b) + b(1 + 2 +....+ /7-1) 

which simplifies to, 
s =  ( N -  b h ) ( N -  b i t -  1) + bh 

2 T (b +/1) 

The average number  of  hops is given by S / (N-1) ,  i.e., 

[ 

' I (N - bb)(N - bh - 1) 
AVG (N - 1) 2 

l 

Substituting the value of  b, 

+ bb ~b _~ b____~] 

' 
AVG 2 ( N -  1~ ~ h N -  ~ -  h -  1 ) 

+INI" 
For the sake of  comparison,  we report  DDLCN and 
daisy-chain results. These are: 

For  DDLCN,  AVG (N - 1) 
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For daisy-chain, 

,,I 

Next, we want to minimize the average number  of 
hops, i.e, we want to minimize the following expression: 

l,++,1',) l,+,1 
+ ~ h ~ + h 

For optimality, 

/7 + l  
(/1 + 1) 

That is, h = l-,/~ ] 

Note that the same opt imum value of  h = [-,/N[ 
minimizes both maximum number of  hops and average 

t J 

number  of  hops. In Table 1 we summerize  maximum 
and average hop results for DDLCN,  daisy-chain, and 
optimal loop for typical values of  N. 

N DDLCN Daisy-Chain Optimal Loop 
Max Avg Max Avg Max Avg 

10 5 2.80 3 2.33 3 2.33 
15 7 4.00 6 3.21 5 3.00 
30 15 7.76 11 5.69 9 4.65 
50 25 12.75 17 9.00 12 6.14 

100 50 25.25 34 17.33 18 9.09 

Table 1. Maximum and average hop distances for 
three different loop architectures. 

4. T H R O U G H P U T  A N A L Y S I S  

In this section we perform the throughput 
analysis to determine the total message traffic that the 
network can handle before saturation occurs. When 
link utilization reaches unity, the network is saturated. 
The total message arrival rate at which this occurs is the 
maximum traffic the network can handle, and is defined 
to be the throughput. For the analysis we make the fol- 
lowing assumptions [KLEI 76]: 

1) Poisson message generation with total aggre- 
gate rate -y, ( m ~ / s e c )  
2) Uniform tramc pattern, and 
3) Saturated throughput conditions,  i.e., message 
traffic on each link equals link capacity. 

w e  compute the maximum traffic in a way similar to 
Wolf ' s  [WOLF 79b] relating each link utilization to the 
total message arrival rate and setting the maximal utili- 
zation to one. 

We assume that shortest routes only are used for 
message transmissions. If  there is more than one shor- 
test route, traffic will be equal ly  divided among the al- 
ternate routes. The total traffic on a forward link may 
be different from the total traffic on a backward link. 
As the average number  of  hops AVG is computed by 
considering the shortest routes from a node to all other 
nodes, the total network traffic caused by distributing 
~,/N units of  traffic from one source to all other destina- 
tions is: 

T! + T b = A V G * y / N  
where T~ is the contribution to total traffic on a forward 
link and Tb is the contr ibution to total traffic on a back- 
ward link. By using suitable policies for routing traffic 
when there is more than one shortest  route between a 
node pair, it is possible to balance the flow on forward 
and backward links. That is, 

T I = Tb = + A V G * y / N  

When all sources are active, saturation is reached if: 
(7"1. + T b ) N  = 2 N t z  

where u is the link capacity (msg/sec) 

Substituting for r I and T0 we obtain: 
YSAT * A V G  = 2 # N  

o r :  

2/xN 
YSAT = A VG 

Finally, substituting for AVG we obtain: 

"YSAT = 
2 ( N ) ( N  - 1) /z 

+INI" (INI+") 
~'sAr is maximum if average number  of  hops is 
minimum. Therefore,  ysAr is also maximized when 

We may compare 'ds result with DDLCN and daisy- 
chain results. 

2 ( N ) ( N  - l )  For DDLC~, tsar = 

For daisy-chain, 

"YSAT 

4 ( N ) ( N  - 1) /z 

Since ~'SAT is proportional to the inverse of  AVG,  and 
AVG is minimized by our topology, the throughput  is 
also optimal for our topology. 
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As a special case, when N is the square of  an in- 
teger, we get the following closed form expressions for 
maximum number of  hops, average number of  hops, 
total flow, and throughput. 

Diameter d = 2 ( ~  - 1) 

N Avg. no. of  h o p s -  (./~ +1) 

2(N - 1) 
z, s A r =  ( ~ _  1) tz 

For example, when N = 64 we have, 

Diameter d = 14 
Avg. no. of hops = 64/9 
3'SAT = 18 /z 

When there is a link failure, the maximum and 
average number of  hops will increase. However, the 
performance of  the optimal loop can be shown to be still 
superior to that of DDLCN or daisy-chain loop in simi- 
lar failure conditions. 

8 

A 

r -  
/ 

/ 

/ 
i 

3 ~Mex. hops 
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0 I i 1 
O 1 2 3 

. . . . .  Daisy  chain 

O p t i m a l  

! 1 I I I I I I I ! 
4 5 d T 8 9 10 11 12 13  14  

N o d e  n u m b e r  

F i g u r e  7. 
E f f e c t  o f  a L i n k  F a i l u r e  o n  M a x i m u m  N o .  o f  H o p s  

5. FAULT T O L E R A N C E  

The optimal double loop architecture provides 
good protection against node and link failures. As many 
alternate routes exist between any node pair, paths can 
be selected adaptively in case of failures. The effect of  a 
node failure is to increase the maximum number of 
hops for some nodes and increase the average number 
of  hops slightly. Figure 6 shows the effect of node #0  
failure on optimal loop and daisy-chain loop, and Figure 
7 shows the effect of link 0--1 failure on optimal loop 
and daisy-chain loop. 

•a 
/ 

Max. hops 

. . . . .  Daisy  chain 

O p t i m a l  

J I I I I I I I I I I I ,  J 
0 1 2 3 4 8 8 7 8 9 10  t l  12 13 14 

N o d e  n u m b e r  

F i g u r e  6 .  

E f f e c t  o f  a N o d e  F a i l u r e  o n  M a x i m u m  N o .  o f  Hops 

A useful measure of  fault-tolerance is to compute 
the terminal pair reliabilities. We consider two farthest 
nodes for terminal reliability analysis. In the optimal 
double loop network there exist many alternate routes 
between any pair of  nodes, and therefore we expect 
high terminal pair reliability. For the two farthest 
nodes, one can intuitively see that the following proper- 
ties hold: 

Terminal reliability ~ No. of  alternate routes; 
and 
Terminal reliability ~ 1 

diameter 

We have already shown that the diameter is minimized 
when h = [#-ill" Also, for this value of  h, the number 
of  alternate routes between the two farthest nodes will 
be higher in the optimal loop than in the daisy-chain 
loop, as shown in the following derivation. Therefore, 
we can conclude that the optimal loop network gives 
higher terminal pair reliability than the daisy-chain loop. 

Now we compute the number of  alternate routes 
between any two farthest nodes in the network. There 
is one path using only forward links, which may not be 
a shortest path. There are several additional paths 
which use backward links and forward links. All these 
routes are shortest routes between that node pair. Each 

of  these routes consists of  b = I---~--N [ backward ho,,s and 
. . J h+l ] r, 
(h-l) forward hops. We get d)ffere,nt routes depending 
on me relative positions o l  giant steps and forward 
hops along the route. Therefore, the number of  alter- 
nate routes between the two farthest nodes is the 
number o f  combinations of  b out of  (b-t-h-l) objects, 
that is: 

b = h - I  
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The expression for the number of distinct routes is 
given by, 

Ib+h- 1) 
R = I +  h - I  

For Liu's loop R = • 
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ForDaisy-chainR l + ( b l  1 ) INI = ~ 2 +  ; 

optimal loop, with /, = l, 1, For the 

= + h - 1 

For example, a 15-node network h=3,  b=3 ,  and 
the number of distinct routes between any two farthest 

nodesis, l + ( 5 2 ) = 1 1 .  

If we maximize R with respect to h, we find that the op- 
i- 1 

t imum value of h is J,/NJ. However, for most values o f  

llo N, /; = ,/N also gives the same maximum value for R. 
Therefore r most values of N, and for N the square of 
an integer, the optimal loop will also maximize the 
number of distinct routes between any two farthest 
nodes. 

6. CONCLUSIONS 

We have presented an optimal double loop topol- 
ogy for locally distributed networks. This network is 
shown to provide the optimum performance with 
respect to maximum number of hops, average number 
of hops, throughput rate and terminal reliability. In par- 
ticular, better performance is achieved with respect to 
previously proposed topologies such as DDLCN and 
daisy-chain loop. The cost of this topology in length of 
loop cable is N([x/-N] + 1), as compared 

/ I  

with 2N for 
DDLCN and 3N for daisy-chain. Nodal interface costs 
are the same for all these architectures. One should 
realize that in a local network cable cost represents only 
a small fraction of total system cost. Therefore it ap- 
pears that the additional cable cost is well compensated 
for by the performance benefits of the optimal loop to- 
pology. 

This type of interconnection scheme among host 
processors may find applications in tightly coupled mul- 
tiprocessor system. A separate host processor can per- 
form the reconfiguration in case of failures. The 
reconfiguration of interconnections under failures, and 
addition of new nodes can be done easily if the inter- 
faces are brought to one place. Interestingly, if all the 
links are bidirectional, the optimal double loop intercon- 
nection is precisely the same as the Illiac IV structure. 
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