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Abstract—Intra-flow network coding was proposed in
recent years as a way of enhancing TCP performance over
wireless networks. Transmission reliability is improved by
sending redundant coded packets instead of retransmitting
data packets. In this paper, we discuss the complex issue of
TCP interaction with network coding and identify how net-
work coding hides indistinctively link and congestion losses
from TCP. Thus, some congestion losses do not trigger TCP
congestion window reduction mechanisms. We then focus
on fairness issues between coded and non-coded flows. As
coded flows are less sensitive than non-coded flows to con-
gestion losses, it prevents them from being as good as non-
coded ones at reacting to congestion, making them greedier.
We compare the performance of competing Pipeline-coded
and non-coded flows in a bottleneck topology. In order to
evaluate the fairness of coded flows, we introduce a new
fairness index, given that coded flows normally perform
better on lossy links without necessarily impacting non-
coded flows. Our results show that unfairness exists, but
it does interestingly not impact highly, because even with
relatively high redundancy factors, non-coded flows do not
starve. It shows that congestion losses are correlated enough
to enable TCP over coding to react to the signal.

INTRODUCTION

The Transmission Control Protocol (TCP) performs
poorly when used over lossy links, like wireless links,
since TCP interprets packet losses as congestion signals
[12]. Recently, new approaches using network coding
have emerged to deal with losses in wireless networks,
like Pipeline Coding [2] or TCP/NC [10]. As a form of
erasure code, they aim at masking link losses from TCP
by adding redundancy and thus allowing its performance
to be improved.
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We believe that one of the big challenges when imple-
menting intra-flow network coding consists in minimiz-
ing the impact it can have on legacy non-coded traffic;
this is a prerequisite for incremental deployment. Since
TCP is by far the most widely used transport protocol
on the Internet, we focus on the case of TCP interaction
with network coding.

As adding a network coding layer tends by design
to conceal network characteristics from TCP, unwanted
side effects can appear. TCP uses the well-known AIMD
congestion control algorithm which, in most imple-
mentations, uses packet losses as a congestion signal.
However, intra-flow network coding, like pipeline coding
[2] [10], is a good way to mask link losses but potentially
also congestion losses from the upper layer, and thus
making TCP flows over network coding greedier.

In this article, we highlight the potential fairness issue
caused by coded flows insensibility to losses and we
compare the performance of competing Pipeline-coded
and non-coded TCP flows in a bottleneck topology.
We introduce a specific index to precisely evalutate the
fairness of coded flows, given that they normally perform
better on lossy links without necessarily impacting non-
coded ones.

I. RELATED WORK

When using intra-flow network coding, for instance
Batch coding, the source node sends random linear
combinations for each batch of outgoing packets. To
compensate losses, more combinations than original
packets, i.e. degrees of freedom, are sent, according to
a constant or adaptive redundancy factor. At destination,
Gauss-Jordan elimination is performed and all packets
can be recovered if enough independant linear combi-
nations have been received. Depending of the coding
implementation, intermediary nodes may recode packets
or just forward them.



Pipeline coding [2] is an enhancement of Batch
coding. A slightly enhanced version of it is part of
ComboCoding [1], an approach that combines the ben-
efits of intra-flow coding with inter-flow coding. The
main advantage of Pipeline over Batch coding is its
reduced coding delay. Data from the upper layer is sent
immediately in the current generation whereas with batch
coding it has to be buffered and to wait for the current
batch to be completed. When the coding window grows
too large, a new empty one for a new generation is
created. This technique reduces delays, as they do not
depend on block or generation size, thus enabling the use
of TCP on top of coding without improperly triggering
timeouts. Therefore, it is a more adapted approach for
real-time interactive or multimedia sessions.

Since TCP is the most used transport protocol, there
are numerous attemps to specifically integrate it with net-
work coding. TCP/NC [10] introduces a layer between IP
and TCP that implements Pipeline-like network coding
over IP and tricks TCP mechanisms to produce desired
results. The source sends linear combinations of all
packets in the congestion window, in a pipeline coding
way, and the receiver does not actually acknowledge
decoded packets but only degrees of freedom in the
form of seen packets. TCP/NC translate random losses
as longer RTT, therefore the losses are masked and the
lossy behaviour of the link appears to both ends as a
virtual queueing delay, thus interacting well with TCP
Vegas. It has been demonstrated TCP/NC is able to react
properly to congestion because congestion losses are not
independant but correlated, as shown in its model [6].
However, this study only considers two TCP/NC flows
in competetion, and not TCP/NC competing with regular
TCP flows.

These protocols have been proven fair when two coded
flows of the same type are competing, but the possible
fairness issue when competing with non-coded flows,
caused by coded flows being less sensitive to losses, has
been more or less left aside.

The underlying issue here is the complex problem of
distinguishing link losses and congestion losses. Differ-
ent approaches have been attempted to solve the problem
in the case of non-coded flows. An estimation of RTT
can be directly used like in Non-Congestion Packet Loss
Detection (NCPLD) [9], with a threshold to assume
congestion loss. TCP NewReno-LP [7] and Veno [3]
and TCP Vegas’s mechanism to estimate queue size,
and assume congestion when queue size is high enough.
Packet jitter also carries information about congestion
state. Jitter-based TCP (JTCP) [11] computes the average
of the inter arrival jitter during one RTT, which is

proportional to the queueing speed. When 3 duplicate
ACKs are received, if the estimated queueing speed is
less than the sending speed, then congestion is assumed.

For coded flows, an enhancement of TCP/NC [8] has
been proposed to weaken the redundancy when con-
gestion is probable using a loss differentiation scheme
based on the Vegas algorithm. CTCP [5] takes a different
approach by introducing a whole new coded transport
protocol, with its own new coding-aware block-based
congestion control based on RTT: the higher the RTT, the
more the coding window is decreased when a loss occur.
This radical approach comes at the cost of a difficult
deployment, as it aims at replacing TCP.

In this paper, we focus on the fairness issue as a first
step of our study related to TCP and network coding
interaction.

II. SENSITIVITY TO LOSSES AND UNFAIRNESS

A. Link and congestion losses

Because losses are indistinctively hidden from TCP by
pipeline coding, chances are some part of the congestion
losses do not actually trigger TCP window reducing
mechanism. This situation get worse when the code re-
dundancy factor increases. Verifying this claim is pretty
simple. After setting up a simple bottleneck topolgy
with 4 nodes and no link losses (figure 1) in the ns-
3 network simulator, we monitor packet drops on queue
overflow, which correspond to congestion losses, and we
compare the window evolution between TCP NewReno
without coding and TCP NewReno over coding in an
extreme situation, with generation size g = 64 and
redundancy ratio R = 1.25. In our implementation, all
intermediary nodes drop redundant packets and recode
innovative ones with redundancy R, so on each link the
actual code redundancy is R, independently of the loss
rate on preceding links.
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Fig. 1. Simulated bottleneck topology

On figure 2 are represented the evolutions of conges-
tion windows, and vertical bars mark the times when a
packet is dropped because of queue overflow, i.e. when
a congestion loss occurs. The observable behaviour of
TCP congestion control mechanisms is radically differ-
ent between the coded case and the non-coded case.
Whereas TCP without coding only need one congestion
loss to detect the congestion (by receiving duplicated
ACKs) and to react by dividing its window, it needs
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dozens of them to react over coding, as losses are masked
from TCP, therefore congestion detection needs an entire
coding generation to be lost, and it can happen only when
more than (R−1)g = 16 packets are lost. For this reason,
overcoded flows are slower to react to congestion than
non-coded ones.
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Fig. 2. Congestion window with (top) and without (bottom) coding

One issue is that some overcoding is required, as
redundancy should not be set as low as Rmin = 1

1−p
(where p is the average measured loss rate) in order to
compensate the losses on average, some more redun-
dancy is necessary to avoid losing generations that statis-
tically encounter more losses or to accommodate a slight
decrease in link quality. For instance, ComboCoding’s
authors use in their redundancy adaptation algorithm a
ratio R = 1.4+ 1

1−p [1]. A higher redundancy value can
lead to coded TCP not reacting well to congestion.

B. Case of competing flows

Let’s consider two flows competing for the bandwidth
on a network. The first one is TCP running over pipeline
coding, and the second one is a not coded TCP flow. Two
different factors hinder the non-coded flow and prevent
it from using its whole share of available throughput :

• Link losses are hidden from the coded flow but not
from the non-coded one. Threrefore, the congestion
control of the second flow interprets them as con-
gestion losses : random losses on a link also result
in duplicated ACKs or timeouts, as a result the TCP
sender adjusts its window size as if a congestion
was present on the network. TCP over coding does
not suffer from those losses, so it keeps a larger
part of the available throughput.

• Some congestion losses are hidden from the coded
flow, but none of them are hidden from the non-
coded one, so the second flow is more sensitive to
actual congestion in the network and reacts faster,
leading to a larger part of the throughput for the
first flow.

The first mechanism is desired, as it is a simple result
of TCP working better over coding, but the second one is
clearly undesired. We want to measure which part from
the better performance of a coded flow comes from its
lower sensibility to link loss and which part comes from
higher sensibility of concurrent flows to congestion.

We simulate a simple cross topology (figure 7) with
the simulator ns-3.
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Fig. 3. Simulated bottleneck topology. All links have 1 ms delay and
uniform loss with probabilty p.

While keeping an uniform loss probability p = 1%,
we run data transfer across two TCP flows, one with
coding and one without. Note throughout this article, the
loss probability p is not expressed at a physical level, but
after retransmissions on the MAC layer, so p is the actual
average loss rate experienced by TCP without coding.
The average throughput over 10 minutes is recorded
for each of the two flows in situations with a different
coding ratio R for pipeline coding. The generation size
is constant n = 16. Note we measure the throughput at
application level, so measured values represent in reality
the goodput.

Results show the performance with coding is actu-
ally worse than without, when R is very low this can
be explained simply : when the flow has not enough
redundancy it tends to lose entire generations, causing
TCP to timeout rather than detecting a loss by receiving
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duplicated ACKs. The difference increase between flows
as R increases, the coded flow taking gradually the
largest part of the available bandwidth. However, there
seems to be a limit and the coded flow does not take it all,
even with relatively high coding ratios like R = 1.5. It
means the correlation of congestion is sufficent to make
the coded flow react at some point.

Yet the behaviour does not depend on generation size,
as shown on figure 5. Whereas generation size is a key
parameter, since it should be set higher enough to not be
sensitive to statistically localised losses but low enough
to reduce then computational overhead, it is not relevant
to flow fairness.
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Fig. 4. Goodput comparison between concurrent flows, one with cod-
ing at different coding redundancy factors and one without (p = 1%)
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Fig. 5. Goodput comparison between concurrent flows, one with
coding at different generation sizes and one without (R = 1.25,
p = 1%)

Running the two flows over different loss rates (figure
6) shows without surprise the throughput for the non-
coded flow decreases when losses increase whereas the
one of the coded flow reach a maximum as the other
flow’s throughput decreases. We can see that at a low

loss rate, the coded flow leaves some room to the other
one. However, it is not clear if part of its throughput is
taken at the expense of the non-coded one.
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Fig. 6. Goodput comparison between concurrent flows at different loss
rates (g = 16, R = 1.25)

III. MEASURING FAIRNESS

Our goal is to obtain a measure that is sensitive to
the throughput that coded flows unfairly take at the
expense of not coded ones, but not sensitive to coded
flows performing better without impacting not coded
ones. Figure 7 shows graphically in a simple case with
two flows the part of throughput we consider as unfairly
taken : in the second case, with two non-coded flows, the
whole capacity is not used because links are too lossy,
whereas in the first case, the coded flow may get more
bandwidth by using the whole capacity, but what is taken
from the first non-coded flow is considered unfair.

codednot coded

not codednot coded

unused

unfair

link capacity

Case 1

Case 2

Fig. 7. Comparison of capacity utilization on a lossy link between a
first case with a non-coded and a coded flow, and a second case with
two non-coded flows

To solve this issue, we introduce a simple modified
fairness index taking into account the better performance
of coded flows over non-coded ones.
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A. Jain’s fairness index

Let’s consider n flows, xi being the throughput of the
ith flow. Jain’s fairness index J [4] rates the fairness of
this allocation with a value between 1

n (worst case) and
1 (best case, all users receive the same allocation).

J(x1, ..., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

The best case for J corresponds to a uniform al-
location, but a uniform allocation is not neccessarily
optimal with coded and non-coded flows. The index
reflects the actual throughput difference and does not
take into account the potentially better performance of
coded flows. Therefore, we need to define an ideal
fair allocation taking into account that coded flows can
perform better without impacting non-coded ones.

B. Fair allocation with coded and non-coded flows

For a given set of flows, we define a fair allocation
as an allocation where :
• The allocation for the subset of coded flows is fair

according to Jain’s index.
• The allocation for the subset of non-coded flows is

fair according to Jain’s index.
• No non-coded flow can get less throughput than it

would get if coded flows were replaced with non-
coded ones.

Intuitively, a fair allocation as defined previously is not
necessarily fair according to Jain’s index, as a coded flow
can get more throughput than a non-coded one, but in a
fair allocation, no coded flow can get more throughput
at the expense of non-coded ones.

C. Formalization

Let A be an allocation with n flows competing on a
lossy path, the first k are coded and the others n − k
are not coded (k > 0). xi is the throughput the flow i
get in the allocation A.
Let A′ be an allocation with the same characteristics
but where all coded flows are replaced with non-coded
ones. x′i is the throughput the flow i get in the allocation
A′

The capacity c is used in the allocation A. We assume
here that the presence of at least one coded flow means
more bandwidth is used compared to the allocation A′,
as coded flows should perform better on lossy links.

c =

n∑
i=1

xi >
n∑

i=1

x′i

Let yi be the throughput the flow i should get in a
fair allocation according to III-B.

A non-coded flow can get less throughput than a
coded flow, but it remains fair if every non-coded one
gets the same absolute throughput as it would if coded
flows were replaced with non-coded flows. It means
∀i ∈ {k + 1, ..., n} yi = x′i.

Because of the fairness of TCP congestion control, as
we consider identical network charasteristics for every
flow (RTT, losses...), we get :

J(x′1, ..., x
′
n) = 1

∀i ∈ {1, ..., n} x′i = x′

So the share of every non-coded flow in the fair
allocation should be:

∀i ∈ {k + 1, ..., n} yi = x′i = x′

Coded flows should get the same share of the fair
allocation :

∀i ∈ {1, ..., k} yi = y

The whole available capacity should be used :
n∑

i=1

yi = ky + (n− k)x′ = c

So the share of every coded flow in the fair allocation
should be:

∀i ∈ {1, ..., k} yi = y =
1

k
(c− (n− k)x′)

In particular if n = 2 and k = 1, it simply means the
coded flow should use the whole bandwith that would
remain if it was not coded:

y1 = c− x′

y2 = x′

D. Modified fairness index

We have seen in the previous paragraph that, in a fair
allocation, a coded flow should get 1

k (c−(n−k)x
′) when

a non-coded flow should get x′, x′ being the average
throughput a flow would get in the same situation if
coded flows where not coded. Let’s define λ the ratio
between the throughput of a non-coded flow and the one
of a coded flow in a fair allocation :

λ =
kx′

c− (n− k)x′

If we multiply the throughputs y1, ..., yk of the coded
flows by a factor λ, Jain’s index for the fair allocation
becomes 1 :

J(λy1, ..., λyk, yk+1, ..., yn) = 1
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So we introduce a modified fairness index J ′ tak-
ing this correction into account, i.e. the throughputs
x1, ..., xk are multiplied by λ :

J ′(x1, ..., xn) =
(λ

∑k
i=1 xi +

∑n
i=k+1 xi)

2

n(λ2
∑k

i=1 x
2
i +

∑n
i=k+1 x

2
i )

This modified fairness index has the same properties
as Jain’s fairness index, but the best case corresponds to
a fair allocation as defined in III-B and not a uniform
allocation. It rates the fairness with a value between 1

n
(worst case) and 1 (best case, the allocation is fair).

In particular if n = 2 and k = 1:

λ =
x′

c− x′

J ′(x1, x2) =
(λx1 + x2)

2

2(λx1)2 + 2x22

Example : let’s consider a coded flow competing
with a non-coded flow on a lossy link. The measured
throughputs are x1 = 7 Mbps for the coded flow and
x2 = 3 Mbps for the non-coded flow, so c = 10 Mbps.
A similar experiment but with 2 identical non-coded
flows give us x′1 = 4 Mbps and x′2 = 4 Mbps, so x′ =
4 Mbps and λ = 2

3 . We eventually get J ′(x1, x2) ' 0.95
(nearly fair) whereas J(x1, x2) ' 0.86.

Applying this new index to the previously measured
throughputs gives us a more precise idea of the actual
flow fairness. Note computing this index also requires
running non-coded TCP flows in the same configuration,
as their average throughput is required to compute λ.

Figure 8 highlights the allocation is actually fairer
in reality than what Jain’s index shows, as the coded
flow takes a part of the resource the non-coded flow
could not take anyway. As a side effect, the maximum
fairness is displaced to higher redundancy (here roughly
from 1.05 to 1.1). In the case of higher loss rate (figure
9), the two indices give rather different results. This
is caused by Jain’s index not taking into account the
very poor performance of TCP at important loss rates,
whereas the modified index does. We can see that at
some point, when losses are too important, the non-
coded flow performs so badly that it is actually fair
for the coded flow to take an overwhelming part of the
throughput.

When R approaches higher values, fairness does not
drop and stays relatively high around 0.85. This is a good
sign, as it indicates even with too much redundancy,
coded TCP flows do not starve non-coded ones. It means
congestion losses are correlated enough to trigger a
generation loss and TCP congestion control algorithm.

It is interesting to note that the maximum fairness
is achieved when R = 1.1, and it corresponds to the
session giving maximum cumulated throughput. This is
logical in the sense that fairness is achieved when the two
flows give simultaneously the best possible performance.
A maximum fairness is achieved for R = 1.25 near
p = 0.02 for similar reasons.
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Fig. 8. Jain’s index at different coding factors for a coded and a
non-coded flow (p = 1%)
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Fig. 9. Jain’s index at different loss rates for a coded (g = 16, R =
1.25) and a non-coded flow

CONCLUSION

In this paper, we highlighted the fairness problem
when Pipeline coding is implemented underneath TCP.
This issue arises because concealing link losses can
interfere with TCP congestion control by also masking
congestion losses. We indroduced a simple specific in-
dex to more precisely evalutate the fairness of coded
flows by taking into account their better performance
on lossy links. Our results shows that unfairness exists
but its impact is relatively limited, because even with
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high redundancy factors a coded flow does not starve
a non-coded one, indicating that congestion losses are
correlated enough to cause the coding to fail and TCP
to react to the congestion.

This investigation is carried on by considering the
effect of redundancy adaptation algorithms on fairness.
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