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ABSTRACT
Today, mobile data owners lack consent and control over the
release and utilization of their location data. Third party
applications continuously process and access location data
without data owners granular control and without knowl-
edge of how location data is being used. The proliferation
of IoT devices will lead to larger scale abuses of trust.

In this paper we present the first design and implementa-
tion of a privacy module built into the GPSD daemon. The
GPSD daemon is a low-level GPS interface that runs on GPS
enabled devices. The integration of the privacy module en-
sures that data owners have granular control over the release
of their GPS location. We describe the design of our privacy
module and then evaluate the performance of private GPS
release and demonstrate that strong privacy guarantees can
be built into the GPSD daemon itself with minimal to no
overhead.

1. INTRODUCTION
Today data owners’ personal mobile devices are constantly

being tracked and monitored by third party applications
without data owners granular consent and control. Data
owners’ trust is being continuously violated [4].

Data owners have a desire to occasionally share their lo-
cation data, though desire granular control and approved
consent. Third party analysts seek to track data owners
continuously. Unfortunately today this tension has resulted
in disproportionate control being in favor of the third party
analysts.

Recent research has tried to improve user behavior in
recognizing permission issues [6], user-defined runtime con-
straints [13], or tools to help developers identify least-privilege
[16].

Additionally, permission managers (e.g., Android and iOS)
offer binary permissions to disable or enable location ser-
vices. However, while this allows data owners to disable lo-
cation services for applications that do not require location
(e.g., Flashlight application) [7], fine grained granularity is
still missing. An Android modification called CynagonMod
has a module called XPrivacy [18]. XPrivacy enables data
owners to configure random or a static location, empty cell
ID, blocks geofences from being set, prevents sending NMEA
data to application, prevents cell tower updates from being
sent to an application, prevents aGPS, returns empty Wi-
Fi scans, and disables activity recognition. Ultimately, this
provides the data owner control at the application layer.

User applications requesting data of users is a binary per-
mission, either I share my data or I don’t. However, sensitive

GPS
Sensor

GPS 
Device Driver

GPSD

Privacy
Module

Client 
Session

Client 
Session

Client 
Session

Client 
Session

Figure 1: Privatization occurs before data is re-
leased to the client application.

data such as location needs finer control on how accurate and
how often the location information is released. Users should
be able to control the granularity of their personal data that
is released. Users require freedom and control over their own
personal data.

However, these approaches discards several important facts:
1) these privacy mechanisms protect at the application layer
only and the underlying operating system still has access to
all system location APIs 2) granular privacy permission so-
lutions (e.g., XPrivacy) are only for rooted Android phones
3) there is no compromise between third party analyzers and
data owners. The expected proliferation of IoT devices will
further exacerbate these privacy issues.

In this paper, we present the first (to our knowledge) im-
plementation of a privacy module to GPSD. Figure 1 shows
an overview of the flow of queries and responses and demon-
strates that the privatization occurs before releasing the data
back to the application. The privacy module ensures that all
GPS data is released according to the data owner’s consent
and choice. We demonstrate that appropriate methodolo-
gies can be placed which provides strong location privacy
guarantees, yet enable analyzers access to privatized loca-
tion data.



1. A privacy module that integrates into the GPSD soft-
ware (runs on every GPS enabled device)

2. A granular privacy interface and control to manage
location privacy settings (e.g., location coarseness and
release frequency)

3. A performant privacy module with minimal overhead

We first describe the architecture and flow of GPSD, we
then describe our privatization algorithms, then we describe
our integration with GPSD, and finally we evaluate our
scheme.

2. RELATED WORK
GPSD is a daemon that network enables the GPS sen-

sor on the majority of mobile embedded systems includ-
ing Android, iOS, Windows Mobile, UAVs, and driverless
cars [9]. On smartphones the network access is limited to
localhost applications only (as opposed to remote applica-
tions). GPSD enables unfettered access to location data and
does not enable or provide any privacy guarantees. Loca-
tionSafe provides a privacy module that provides uniform
private access across all platforms.

Mobile device permission systems has received attention
in the past. Human interaction studies which seek to en-
hance reader comprehension have been proposed and evalu-
ated [6, 5]. Such systems lack strong and enforacable privacy
guarantees. Static analysis tools have been proposed [19].
Though such systems serve only to notify the data owner
of privacy breaches and are unable to enforce any privacy
runtime guarantees. However, these solutions modify the
underlying OS thus making them specific to a single OS or
device [20, 18]. Furthermore, these solutions are unable to
balance the privacy and utility tradeoff, ultimately resulting
a binary approach to privacy.

To guarantee data owner privacy upon the release of data,
various mechanisms have been proposed [12, 14, 11, 2, 3].
Differential privacy has emerged as the strongest of these
privacy mechanisms [2, 3]. The core idea of differential pri-
vacy is to provide strong bounds and guarantees on the pri-
vacy leakage when multiple aggregate analytics are run de-
spite the presence or absence of a single data owner from
the dataset. This privacy mechanism is provided by adding
differentially private noise to the aggregrate answer. As op-
posed to the originally proposed differentially private mech-
anism which first collects data in a centralize database and
then privatizes the release of the data, LocationSafe im-
mediately privatizes the data at the data source (sensor) in
real-time.

3. GOALS AND PROBLEM STATEMENT
We now describe the system goals, performance goals,

threat model, and privacy goals of LocationSafe.

3.1 System Goals
There should be well defined and enforced constraints re-

garding third party application’s (apps) access to location
data. The data owner should be able to specify the con-
straints such as how accurate location information should
be disclosed and how frequent the location data should be
disclosed.

Apps only have access to the privatized data and are un-
able to directly access GPSD daemon and data. All location
data released must be approved by the data owner.

The system should support applications that need real-
time access to location data. The privacy policy defines
how frequently the application is allowed to receive updates
(express in epochs), how accurate the location data may
be, and geographical regions as to where the application is
allowed to receive location data from.

We use a social network messaging application as an ex-
ample. The application may want to know which city an in-
dividual is in, though pinpoint location information within
meter accuracy is not required. The data owner is allowed
to define both the radius (e.g., city) that is allowed to be
returned as well as the frequency (e.g., say at most every
hour).

Ultimately the data owner has final say over how loca-
tion data and the tradeoff between privacy and utility. The
utility has benefits for third party analysts interesting in
learning aggregate behavior.

3.2 Performance Goals
The system should scale gracefully as the number of appli-

cations connecting to the GPSD daemon increases. Location
data will be released within the defined epochs.

3.3 Threat Model
Mobile devices (e.g., smartphones, tablets, wearables) are

under the data owner’s control. Kernel and underlying OS is
vetted and verified (signatures and trusted sources). Focus is
not on low level system threats. We assume that the operat-
ing system itself is not malicious and provides a mechanism
to provide a privacy policy settings manager accessible to
the data owner. Secure micro kernels such as seL4 address
these issues and are out of scope for this paper. Applications
do not have a system exploit (e.g., rootkit) to circumvent the
system.

Applications may try to request data more frequently than
the defined epoch. LocationSafe will deny such aggressive
requests and ensure that data is only released within the
defined epoch.

Applications may act as sybils and send false application
IDs in order to confuse the GPSD daemon. LocationSafe
will treat sybil applications accordingly using data owner
defined defaults. Thus, sybil applications may either be re-
ceive location data using default privacy configurations or
not at all.

3.4 Privacy Goals
Data owners should be able to limit how frequently an

application access location data. Data owners should also
be able to define fine-grained access to location data. Appli-
cations for which the data owner feels the application does
not meter level accuracy, the data owner should be allowed
to define a radius from which the location value can be re-
turned from. Additionally, for scenarios where fine-grained
location is required, the data owner can define a grid system
from which potential locations can be returned from.

GPS sensor data is only accessible via GPSD.

4. ARCHITECTURE
Figure 2 depicts the main components GPSD event loop:

accepting new client connections, accepting new client sub-
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Figure 2: GPSD event loop. Privatization occurs
when reporting GPS data to the client.

Figure 3: In the grid privatization a single location
may randomize to one or many locations. In the ex-
ample above two locations are returned. However,
in the aggregate the analyst is able to estimate the
underlying population value without violating indi-
vidual privacy.

scriptions, and GPS reporting to all subscribed clients. Each
client connecting passes in an application identifier which
is mapped to a privacy configuration managed by the sys-
tem. The privacy configuration contains the epoch (how
often data is released in milliseconds), differential private ε,
privatization radius in meters, and the randomized response
coin flips. Clients are allowed to pass in a recommended set
of privacy parameters, though these are checked against user
settings and are not allowed to exceed the privacy threshold
defined by the user. In such cases user settings are adhered
to.

4.1 Privatization
LocationSafe currently supports two modes of privati-

zation: radius privacy and grid privacy via differential pri-
vacy.

The first mechanism is via radius privacy whereby the
data owner can specify a radius cover wherein a random
point within the defined range is chosen. This approach
favors strong privacy at the expense of utility. That is a
larger radius grants more privacy though limits the location

accuracy.
The second privacy mechanism represents the location

space as a grid. The grid can be sized according to the
data owner’s specification. The current location is placed
within the grid. Then leveraging the randomized response
method one or many grid locations are returned as seen in
Figure 3.

Randomized response [17] was originally created by social
scientists as a mechanism to perform a population study
over sensitive attributes (such as drug use or certain eth-
ical behaviors). Randomized response allows data owners
to locally randomize their truthful answer to analyts’ sen-
sitive queries and respond only with the privatized (locally
randomized) answer. We utilize randomized response as our
privacy mechanism as randomized response satisfies the dif-
ferential privacy guarantee for individual data owners, it
provides the optimal sample complexity for local differen-
tial privacy mechanisms [1], and it easily suitable for the
location grid type answers we provide.

4.1.1 Mechanism Description
We will now describe how each data owner privatizes their

response utilizing the randomized response mechanism. Sup-
pose each data owner has two independently biased coins.
Let the first coin flip heads with probability p, and the sec-
ond coin flip heads with probability q. Without loss of gen-
erality, in this paper, heads is represented as “yes” (i.e., 1),
and tails is represented as “no” (i.e., 0).

Each data owner flips the first coin. If it comes up heads,
the data owner responds truthfully; otherwise, the data owner
flips the second coin and reports the result of this second coin
flip.

Suppose there are N data owners participating in the pop-
ulation study. Let Ŷ represent the total aggregate of “yes“
randomized answers. The estimated population with the
sensitive attribute YA can be computed as:

YA =
Ŷ − (1 − p) × q ×N

p
(1)

The intuition behind randomized response is that it pro-
vides “plausible deniability”, i.e., any truthful answer can
produce a response either “yes” or “no”, and data owners re-
tain strong deniability for any answers they respond. If the
first coin always comes up heads, there is high utility yet no
privacy. Conversely, if the first coin is always tails, there is
low utility though strong privacy. It has been shown that by
carefully controlling the bias of the two coin flips, one can
strike a balance between utility and privacy ( Table 4 in [8]
and Table I in [10]).

4.1.2 Multiple Sensitive Attributes
While randomized response is an intuitive privacy mech-

anism for a single location, naturally the question becomes
how does one deal with multiple locations, i.e., a grid rep-
resentation? A host of ”polychotomous” mechanisms have
been studied and surveyed in the literature [8] using mul-
tiple randomizing mechanisms or maximum likelihood esti-
mators [15]. However, it turns out that simply repeating an
application of [8] for each grid location turns out to be an
“optimal” [15] approach.

Thus, LocationSafe repeats the randomized response
mechanism for each grid location. For example, if a traffic
analyst wishes to understand the traffic flow of a few key



Epoch (seconds)
5 10 15

# Clients
25 7 12 16
64 6 11 14

Table 1: Scaling performance of clients receiving a
response in specified epoch. Values are averaged
across ten iterations.

locations, the traffic analyst issues a query that is a Boolean
bit-vector asking each data owner to indicate the location
they are at. Then, each data owner performs randomized
response for each location and replies with a Boolean bit-
vector. The traffic analyst then aggregates and sums the bit-
vectors to calculate the number of vehicles at each location.

5. EVALUATION
To evaluate the overhead of the addition of the privacy

module to GPSD, we run 25 and 64 clients connecting to
GPSD with varying epochs of 5,10,15 seconds as seen in
Table 1. The evaluation was run on a laptop running Arch-
linux release 2016.06.01 kernel 4.5.4 with two i5 physical
cores (four logical) and 12gb ram. GPSD by default has a
limit of 64 clients so we stay within this bound.

The results show that minimal overhead is incurred by
the privacy module and that clients are able to reasonably
receive location updates within the allotted epoch. Even
as more clients connect the performance guarantees do not
degrade.

6. CONCLUSION
In this paper we present to our knowledge the first soft-

ware privacy module for GPSD which is a GPS daemon
running on the majority of mobile embedded systems today.
Data owners are able to express privacy consent and con-
trol by enforcing privacy at the lower level of the OS with
minimal runtime overhead.

For future work we plan integration with Android and
iOS. This will allow us to evaluate the impact and design on
location based services.
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